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Abstract

The performance of automatic speech recognition can often

be significantly improved by combining an ensemble of mod-

els together. When using ensemble methods, natural questions

arise regarding the most effective methods of obtaining diver-

sity and performing combination. Also, there are several meth-

ods that can improve the computational efficiency when decod-

ing through the ensemble. This PhD project is focused around

addressing each of these issues.

Index Terms: speech recognition, ensemble, combination,

student-teacher

1. Introduction

Ensemble combinations have often been found to outperform

single models in Automatic Speech Recognition (ASR) [1–4].

The performance gains are attributed to the possibility of cor-

recting errors that occur in each model [1], reducing the like-

lihood of selecting a poor model, and increasing the space of

possible models [5]. Furthermore, these gains are primarily de-

pendent on the ensemble diversity and the accuracy of the in-

dividual models [6]. There are many possible methods of in-

troducing diversity into an ensemble. Moreover, there are also

many possible schemes to combine the models together. Unfor-

tunately, the computational demand of performing hypothesis-

level combinations, such as ROVER [1], scales linearly with the

ensemble size. As such, more efficient schemes need to be in-

vestigated to allow fast decoding while maintaining the standard

of performance. This paper summarises the research directions

taken in this project to address these issues of ensemble diver-

sity, combination, and decoding efficiency.

2. Diversity methods

The models within an ensemble need to be diverse in order to

achieve significant combination gains [6]. An intuitive interpre-

tation of this is that models with uncorrelated output errors may

possibly correct for each other’s mistakes. From a Bayesian per-

spective, having a more diverse ensemble implies marginalising

over models that span a wider region of the space of possible

models.

Diversity can be introduced into the ensemble by injecting

randomness at any stage along the ASR pipeline. From the bot-

tom up, diversity can be introduced into the features, trained

transform and phonetic classifier, phonetic clustering, transi-

tion model, and language model. The diversity introduced can

be intrinsic, as in Deep Neural Network (DNN) initialisation,

bagging [8], dropout [9], and random forests [10], which rely

on random sampling from a prior to achieve diversity. It can

also be extrinsic, as in Adaboost [11] and negative correlation

learning [12], which explicitly train the models to be different.

Furthermore, it is possible to combine different model types,

such as combining DNN and Recurrent Neural Network (RNN)

acoustic models.

In this project, several intrinsic diversity methods that oper-

ate at different stages along the ASR pipeline are compared for

the diversity that they provide and their combination gains. The

novel intrinsic diversity methods of Echo State Network (ESN)

[13] random projection and RNN Language Model (RNNLM)

[14] random initialisation are also investigated.

2.1. Feature representation diversity

Diversity can be introduced into the feature representation by

performing a random projection of the feature vectors. Ideally,

the resulting information content within the projection should

be different for each model within the ensemble, allowing each

model to learn to classify based on these different informa-

tion. One possible random projection that can achieve this is the

ESN. The ESN is a single RNN layer that has random weights

that remain untrained. By varying the prior distribution that

the ESN weights are sampled from, it is possible to influence

the time scales for which recurrent information is stored. This

project investigates using the ESN projection as the input to a

standard hybrid architecture.

2.2. Language model diversity

At the top end of the ASR pipeline, it is possible to obtain im-

proved performance by re-scoring the decoding lattice using an

RNNLM [14]. As with other neural network architectures, the

RNN is trained starting from a random initialisation, and its

training is usually a non-convex problem. It may therefore be

possible to obtain significant diversity from RNNLMs that have

been trained starting from different weight initialisations.

2.3. Diversity metrics

When investigating different diversity methods, it is important

to be able to objectively compare the amount of diversity that

each method provides. Depending on the combination method

used, it may be more important to maximise the diversity at

the frame or hypothesis level. At the frame level, one possible

diversity metric is the KL-divergence between the frame pos-

teriors of each model, represented by the DNN output. At the

hypothesis level, it is difficult to compute the KL-divergence

between word or sentence posteriors, because the hypotheses

are often stored in pruned lattices, which do not encompass the

space of all possible hypotheses. An alternative diversity met-

ric is to compute the WER of one model, using the transcription

generated by another model as a reference. This provides a mea-



sure of how many words are recognised differently between the

two models.

3. Combination schemes

Model combination is a crucial aspect of ensemble methods.

Part of this project is involved in analysing the relationships be-

tween the multitude of existing combination schemes. From

a Bayesian perspective, each of the combination schemes can

be viewed as applying a different set of assumption when

marginalising over possible models. Combination schemes at

the hypothesis level, such as Minimum Bayes’ Risk (MBR)

combination decoding [4], confusion network combination [2],

and ROVER [1], aim at obtaining a better hypothesis posterior.

Frame level schemes, such as linear ensembles [3] and joint de-

coding [7] aim to obtain a better frame posterior. There are var-

ious advantages and disadvantages in performing each of these

combination methods, in terms of the diversity they utilise, their

efficiency, and the constraints they enforce.

4. Efficient decoding

Although ensemble methods may be able to provide perfor-

mance gains over single models, the computational demand of

standard combination methods tends to scale linearly with the

ensemble size. This can especially hinder real-time applica-

tions. This project investigates methods to improve the compu-

tational efficiency of decoding. One method that can partially

alleviate this demand is to perform a frame-level combination,

such as joint decoding, instead of a hypothesis-level combina-

tion. This requires the generation and processing of only a sin-

gle decoding lattice for the whole ensemble.

4.1. Student-teacher training

It is possible to train a single student model to emulate the

performance of a teacher ensemble [15]. Decoding then only

needs to be performed through the single student model. Exist-

ing work on student-teacher training have largely investigated

training at the frame level, where the student DNN is trained to

match the outputs of the teacher ensemble DNNs, thereby em-

ulating their frame posteriors. Sequence training criteria have

been shown to outperform frame-level criteria. This project

investigates incorporating sequence training into the student-

teacher framework. One possibility of achieving this is to train

the student model to emulate the hypothesis posteriors of the

teacher ensemble. A potential criteria is to minimise the KL-

divergence between the student and teacher ensemble hypothe-

sis posteriors, which can be seen as a generalisation of the Max-

imum Mutual Information (MMI) criterion. Since MBR criteria

have been shown to outperform MMI, it may prove beneficial

to investigate methods of incorporating aspects of MBR criteria

into student-teacher training.

4.2. Methods for random forest ensemble

The random forest method is capable of providing a relatively

large amount of diversity. However, it is not a trivial task in try-

ing to improve its ensemble decoding efficiency, because each

model has a different set of phonetic clusters. Frame-level com-

bination and student-teacher methods therefore need to be mod-

ified to accommodate such a diversity. This project shall inves-

tigate such modifications.

5. Conclusion

This paper has presented a summary of the research directions

taken in an investigation into ensemble methods. The main foci

of this project are to investigate the diversity methods, combi-

nation schemes, and techniques to improve decoding efficiency

while maintaining the standard of performance of the ensemble.
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