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1. Introduction
Voice Conversion (VC) is a technique that converts the per-
ceived speaker identity in a given speech signal from a source
speaker to a target speaker without affecting the linguistic
content of the utterance [1]. The basic framework of VC
first extracts speaker-specific information (namely, spectral and
prosodic features (especially speaking style)) from both the
source and the target speakers. Learn the mapping function
between corresponding feature pairs and predict the converted
features. These features are again converted back to the speech
signal using VOCODER. VC broadly can be categorized into
parallel (if both the speakers have spoken the same utterances)
and non-parallel cases (if both the speakers have spoken differ-
ent utterances from a same language or different language) (for
non-parallel corpus) [2].

Even if both the speakers have spoken the same utterances,
the spectral features from both the source and the target speak-
ers need to be aligned during training due to a speaking rate
variation across the speakers (i.e., interspeaker variations) and a
speech rate variations within the speaker (i.e., intraspeaker vari-
ations) [3, 4]. So is the case for non-parallel VC. One of the ma-
jor focuses of this thesis is to identify issues related to the align-
ment on the quality of converted voices [5, 6]. In addition, we
also identified the impact of outliers and hence, their removal on
the quality of converted voices [7, 8]. Furthermore, we also pro-
posed convergence theorem for one of the popular alignement
techniques for non-parallel VC case, namely, Iterative combi-
nation of Nearest Neighbor search step and Conversion step
Alignment (INCA) algorithm and its extension in the form of
dynamic INCA algorithm [9, 10]. Moreover, we also proposed
to use Vocal Tract Length Normalization-based warped features
for avoiding the need of alignment stage in the case of non-
parallel VC [11].

Apart from this, we proposed novel Amplitude Scaling
(AS)-based method for BiLinear Frequency Warping (BLFW)-
based mapping techniques for the VC [12]. Furthermore,
novel Generative Adversarial Network (GAN)-based model
with Minimum Mean Square Error (MMSE) Regularizer has
also been proposed, which is used for the VC as well as Non-
Audible Murmur-to-WHispered SPeech (NAM2WHSP) con-
version task [13]. In my thesis, issues related to the objective
evaluations were also identified and novel objective measure,
based on acoustic-to-articulatory inversion technique was also
proposed [14].

2. Major Contributions
Brief summary of each contribution along with its motivation
and key results are presented in the next Sub-Section.

2.1. Impact of Alignment

Given a source and target speakers’ parallel training speech
database (in the parallel data VC case), first task is to align

source and target speakers’ spectral features at frame-level be-
fore learning the mapping function. The accuracy of alignment
will affect the learning of mapping function and hence, the voice
quality of converted voice in VC. The impact of alignment is not
much explored in the VC literature [15]. Most of the alignment
techniques try to align the acoustical features (namely, spec-
tral features, such as Mel Cepstral Coefficients (MCC)). How-
ever, spectral features represents both speaker as well as speech-
specific information. In this work, we have done analysis on
the use of different speaker-independent features (namely, un-
supervised posterior features, such as Gaussian Mixture Model
(GMM)-based and Maximum A Posteriori (MAP) adapted from
Universal Background Model (UBM), i.e., GMM-UBM-based
posterior features) for the alignment task [5]. In addition, we
proposed to use different metrics, such as symmetric Kullback-
Leibler (KL) and cosine distances instead of Euclidean distance
for the alignment [5]. Our analysis-based on % Phone Accuracy
(PA) is correlating with the subjective scores of the developed
VC systems with 0.98 Pearson correlation coefficient [5].

2.2. Outliers removal

Few corresponding pairs that are obtained after the alignment
are inconsistent with the rest of the data called as outliers. These
outliers shift the parameters of the mapping function from its
true value and hence, affect the learning of the mapping func-
tion during the training phase of the VC task. We have proposed
the effectiveness of the outliers removal as a pre-processing step
in the VC [7]. The proposed method uses a score distance
that is estimated using Robust Principal Component Analysis
(ROBPCA) to detect the outliers. In particular, the outliers are
determined using a fixed cut-off on the score distances, based on
the degrees of freedom in a chi-squared distribution [16], which
is speaker pair-independent. The fixed cut-off is due to the as-
sumption that the score distances follow the normal (i.e., Gaus-
sian) distribution, which is a weak statistical assumption even in
the cases where quite a large number of samples are available
[17]. Hence, we proposed to explore speaker pair-dependent
cut-offs to detect the outliers [8]. We have presented our results
on two state-of-the-art databases, namely, CMU-ARCTIC and
Voice Conversion Challenge (VCC) 2016 by developing various
state-of-the-art methods in the VC. In particular, we have pre-
sented effectiveness of outliers removal on GMM [18, 19, 20],
Artificial Neural Netowrk (ANN) [21, 22], and Deep Neural
Network (DNN)-based VC techniques [23, 24]. Furthermore,
we have presented subjective and objective evaluations along
with 95 % confidence interval to quote the statistical signifi-
cance of the results. We obtained on an average 0.56 % rela-
tive reduction in Mel Cepstral Distortion (MCD) with the pro-
posed outliers removal approach as a pre-processing step [8].
In particular, with the proposed speaker-dependent cut-offs for
the outliers removal, we have observed relative improvement of
21.38 % and 21.99 % (on an average) in the speech quality and
the Speaker Similarity (SS), respectively [8].



2.3. INCA and D-INCA

Non-parallel Voice Conversion (VC) has gained significant at-
tention since last one decade. Obtaining corresponding speech
frames from both the source and target speakers before learn-
ing the mapping function in the non-parallel VC is a key step
in the standalone VC task. Obtaining such corresponding pairs,
is more challenging due to the fact that both the speakers may
have uttered different utterances from same or the different lan-
guages. Iterative combination of a Nearest Neighbor search
step and a Conversion step Alignment (INCA) and its variant
Temporal Context (TC)-INCA are popular unsupervised align-
ment algorithms [25, 26]. INCA algorithm was shown to con-
verge empirically, however, its theoretical proof has not been
discussed in detail in the VC literature. We have presented
that the INCA algorithm will converge monotonically to a lo-
cal minimum in mean square error (MSE) sense [9]. In addi-
tion, we also present the reason of convergence in MSE sense
in the context of VC task. The INCA and TC-INCA iteratively
learn the mapping function after getting the Nearest Neighbor
(NN) aligned pairs from the intermediate converted and the tar-
get spectral features. In this work, we propose to use dynamic
features along with static features to calculate the NN aligned
pairs in both the INCA and TC-INCA algorithms (since the dy-
namic features are known to play a key role to differentiate ma-
jor phonetic categories [27, 28, 29, 30]). We obtained on an
average relative improvement of 13.75 % and 5.39 % with our
proposed Dynamic INCA and Dynamic TC-INCA on the CMu-
ARCTIC database, respectively [10]. This improvement is also
positively reflected in the quality of converted voices.

2.4. VTLN-based features for non-parallel VC

In the non-parallel VC with the INCA algorithm, the occur-
rence of one-to-many and many-to-one pairs in the training data
will deteriorate the performance of the standalone VC system.
The work on handling these pairs during the training is less ex-
plored. In this work, we establish the relationship via intermedi-
ate speaker-independent posteriorgram representation, instead
of directly mapping the source spectrum to the target spectrum.
To that effect, a DNN is used to map the source spectrum to
posteriorgram representation and another DNN is used to map
this posteriorgram representation to the target speaker’s spec-
trum. In this work, we propose to use unsupervised Vocal Tract
Length Normalization (VTLN)-based warped Gaussian posteri-
orgram features as the speaker-independent representations. We
performed experiments on a small subset of VCC 2016 database
[11]. We obtain the lower Mel Cepstral Distortion (MCD)
values with the proposed approach compared to the baseline
as well as the supervised phonetic posteriorgram feature-based
speaker-independent representations. Furthermore, subjective
evaluation gave relative improvement of 13.3 % with the pro-
posed approach in terms of Speaker Similarity (SS) [11].

2.5. BLFW + novel AS techniques

In Frequency Warping (FW)-based VC, the source spectrum is
modified to match the frequency-axis of the target spectrum fol-
lowed by an Amplitude Scaling (AS) to compensate the ampli-
tude differences between the warped spectrum and the actual
target spectrum [31, 32, 33]. We propose a novel AS tech-
nique which linearly transfers the amplitude of the frequency-
warped spectrum using the knowledge of a GMM-based con-
verted spectrum without adding any spurious peaks. The nov-
elty of the proposed approach lies in avoiding a perceptual im-

pression of wrong formant location (due to perfect match as-
sumption between the warped spectrum and the actual target
spectrum in state-of-the-art AS method) leading to deteriora-
tion in converted voice quality. From subjective analysis, it is
observed that the proposed system has been preferred 33.81 %
and 12.37 % times more compared to the GMM and state-of-
the-art AS method for voice quality, respectively [12]. Similar
to the quality conversion trade-offs observed by other studies
in the literature, speaker identity conversion was 0.73 % times
more and 9.09 % times less preferred over GMM and state-of-
the-art AS-based method, respectively [12].

2.6. Novel MMSE GAN

The murmur produced by the speaker and captured by the Non-
Audible Murmur (NAM)-one of the Silent Speech Interface
(SSI) technique, suffers from the speech quality degradation.
This is due to the lack of radiation effect at the lips and lowpass
nature of the soft tissue, which attenuates the high frequency-
related information. A novel method for NAM2WHSP con-
version incorporating GAN is proposed. The GAN minimizes
the distributional divergence between the whispered speech and
the generated speech parameters (through adversarial optimiza-
tion) [34, 35]. The objective and subjective evaluation per-
formed on the proposed system, justifies the ability of adver-
sarial optimization over ML-based optimization networks, such
as a DNN, in preserving and improving the speech quality and
intelligibility. The adversarial optimization learns the mapping
function with 54.2 % relative improvement in MOS and 29.83
% absolute reduction in % WER w.r.t. the state-of-the-art map-
ping techniques [13]. Furthermore, we evaluated the proposed
framework by analyzing the level of contextual information and
the number of training utterances required for optimizing the
network parameters, for the given task and database [13].

2.7. Quality Evaluation in VC

We propose a novel application of the acoustic- to- articulatory
inversion (AAI) towards a quality assessment of the voice con-
verted speech. The ability of humans to speak effortlessly re-
quires the coordinated movements of various articulators, mus-
cles, etc. This effortless movement contributes towards a nat-
uralness, intelligibility and speakers identity (which is partially
present in voice converted speech). Hence, during VC, the in-
formation related to the speech production is lost. We propose
to quantify this loss by showing an increase in RMSE error for
a male voice (up to 12.7 % in tongue tip) for voice converted
speech followed by showing a decrease in mutual information
(I) (by 8.7 %) [14]. Similar results are obtained in the case of a
female voice. This observation is extended by showing that the
articulatory features can be used as an objective measure. The
effectiveness of the proposed measure over MCD is illustrated
by comparing their correlation with a MOS [14]. Moreover,
the preference score of MCD contradicted ABX test by 100 %,
whereas the proposed measure supported ABX test by 45.8 %
and 16.7 % in the case of female-to-male and male-to-female
VC, respectively [14].
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