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1. Motivation
Representation of a speech and audio signal based on human
auditory processing is of significant interest in developing fea-
tures for speech and audio processing applications [1]. The
traditional approaches to extract the auditory features are ei-
ther based on computational or mathematical models of audi-
tory system [2–5]. Recently, representation learning (RL) has
gained a significant interest for feature learning in various sig-
nal processing areas including speech processing [6]. In the
speech processing literature, it is also called Automatic Speech
Analysis (ASA) that involves the extraction of meaningful in-
formation using computers from the speech signals [7]. There
are various approaches proposed for auditory modeling using
RL techniques [8–18]. Unsupervised learning is one of the
important forms of representation learning since many human
learning tasks are unsupervised [19], [20].

A motivation for this thesis is the first notable study con-
ducted by M. Lewicki to show that the human auditory sys-
tem (HAS) is adapted to the sound statistics [8]. The exper-
imental results in [8] showed that the optimal auditory codes
are different according to the statistics of sounds. The objec-
tive of this thesis is to propose a novel auditory representation
learning model that can be used in speech and audio process-
ing applications. In this thesis, we have developed unsuper-
vised auditory filterbank learning using a Convolutional Re-
stricted Boltzmann Machine (ConvRBM). Our proposed Con-
vRBM model has been successfully applied in automatic speech
recognition (ASR) [21–25], Environmental Sound Classifica-
tion (ESC) [26], spoof speech detection (SSD) [27], [28], and
infant cry classification (ICC) [29], [30]. Next, we discuss the
key research challenges in the development of auditory models.

2. Key Research Challenges
The Human Auditory System (HAS) is one of the engineering
masterpieces of the human body that is unique and distinct from
other animals. The key research challenges in developing the
human auditory model are as follows:

1. The HAS is highly complex containing several layers
of nonlinear transformations and physiological effects,
many of which are still not clearly understood [31].

2. There is a significant importance of the temporal struc-
tures in the sounds. Most of the auditory models in
speech and audio applications have used windowing for
the quasi-stationary assumptions that introduce artifacts
[32]. Hence, how to preserve the temporal structures in
the sounds is another open research issue.

3. The standard auditory representations use a fixed audi-
tory frequency scale and filter shapes for a variety of ap-
plications. However, the auditory system is continuously
adapting to the natural sound statistics [8].

4. Understanding the cortical representation of the sounds
is currently an active research area in auditory neuro-
science. Due to the highly complex nature of the audi-
tory cortex, many computational and RL models are still
at an elementary-level.

Figure 1: Architecture of proposed model of auditory filterbank
learning using ConvRBM. After [22].

3. Contributions From the Thesis
The main contribution of the thesis is to propose a novel model
of the auditory representation learning that tries to address a
few of the research challenges mentioned above. The model
is based on ConvRBM, an unsupervised probabilistic graphical
model (PGM). Following are the key contributions in this thesis
using our proposed ConvRBM model:

3.1. Proposed Model for Auditory Representation Learning

Compared to the earlier work of using ConvRBM to model the
spectrograms with sigmoid units [34], we proposed to model
the raw speech signals of arbitrary lengths and thus, avoiding
the need of windowing. We also propose to use noisy rectified
linear units (NReLU) (instead of sigmoid units in [34]) for in-
ference in ConvRBM. We further improved our proposed Con-
vRBM using an annealing dropout and the Adam optimization.
For noise-robust ASR task, a novel auditory-based feature rep-
resentation is proposed using ConvRBM and the energy estima-
tion using the Teager Energy Operator (TEO). An unsupervised
deep auditory model (UDAM) is proposed by stacking the two
ConvRBMs using a greedy layer-wise training [24]. Hence, the
proposed UDAM can be seen as a simplified model of the deep
auditory processing in humans.

3.2. Analysis of the Model and Representation

The subband filters, frequency scale, and the hidden unit rep-
resentations of the ConvRBM are analyzed in this thesis. The
comparative analysis of the subband filters and the frequency
scales obtained using various sound categories are also provided
(also shown in Figure 3). Specifically, frequency scales ob-
tained via ConvRBM training on three standard ASR database
are shown in Figure 2. The cross-domain experiments are per-
formed on the ASR task to justify that ConvRBM can learn gen-
eral representation across various databases of the speech sig-
nals. The mathematical justification of improved performance



Table 1: Summary of experimental results (obtained through different types of DNN back-ends) for various standard ASR databases.

Database Proposed Representation Relative Imp.

TIMIT ConvRBM-BANK 2.56 % PER [21], [22]
WSJ0, WSJ ConvRBM-BANK 1.35-6.82 % WER [21],, [22]
AURORA 4 ConvRBM-BANK 1.25-3.85 % WER [22]
AURORA 4 TEO-ConvRBM-BANK 1.26-11.63 % WER [25]
Gujarati Agricultural ASR System TEO-ConvRBM-BANK 5.4 % WER [33]

PER=Phone Error Rate, WER = Word Error Rate

Table 2: Summary of experimental results in audio classification applications

Application Database Proposed Representation Absolute Improvement

ESC ESC-50 ConvRBM-BANK 10.65-18.70 % Acc [26]
Synthesic SSD ASVSpoof 2015 ConvRBM-CC 4.76 % EER [27]
Replay SSD ASVSpoof 2017 AM-FM part of ConvRBM-CC 5.28-7.48 % EER [28]
Infant Cry Classification Baby Chillanto, DA-IICT ConvRBM-CC 0.58-2 % Acc [29]

EER = Equal Error Rate, Acc=Classification Accuracy

in the noise-robust ASR task is given using the Lipschitz conti-
nuity conditions derived for the ConvRBM [24].
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Figure 2: Comparison of filterbank learned using ConvRBM
with auditory filterbanks. After [22].

3.3. Applications

The first motivation to develop the ConvRBM is to use it as a
front-end in the ASR task. As a part of the MeitY, Govt. of
India sponsored consortium project at DA-IICT, ConvRBM is
also applied in the development of a speech-based access sys-
tem for the agricultural commodities in the Gujarati language.
Later, the ConvRBM is applied in a variety of speech and audio
processing applications, namely, Environmental Sound Classi-
fication (ESC), Spoof Speech Detection (SSD), and Infant Cry
Classification (ICC). In all these applications, our proposed
model gave consistently better performance compared to the re-
spective baselines. The overall contributions of this thesis in
various applications are summarized in Figure 3.

4. Results and Discussions
The summary of experimental results on various standard ASR
databases using is shown in Table 1. In TIMIT, WSJ, and AU-
RORA 4 task, ConvRBM filterbank (denoted as ConvRBM-
BANK) is used as a front-end and DNN is used as a back-
end. Noise robustness for AURORA 4 and agricultural ASR
task was further improved using TEO applied on ConvRBM-
BANK. The summary of experimental results on the various
audio classification task is shown in Table 2. We achieved

state-of-the-art results on the ESC-50 classification task [26]
as described in the literature [35] (also referred in [36]). Ex-
cept for the ESC task, we used ConvRBM Cepstral Coefficients
(ConvRBM-CC) obtained by applying Discrete Cosine Trans-
form (DCT) on ConvRBM-BANK on synthetic and replay SSD
task and infant cry classification.

Figure 3: Proposed model applied in different applications
along with the subband filters for particular sound categories.

5. Summary and Conclusions
In this thesis work, a novel auditory representation learning
framework using ConvRBM is presented. The significance of
our proposed model is to learn subband filters directly from
the raw speech signals of arbitrary lengths. The model is ap-
plied in several ASR and audio classification tasks. The learned
subband filters are adapted with respect to specific sound cate-
gories. Our proposed approach of model development and anal-
ysis could be a good starting point for those who would like to
advance the research in auditory representation learning.
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