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Abstract
In this extended abstract, I describe the topic of my PhD the-
sis: Evaluating what the impact of audible feedback is on silent
speech production and how audible feedback affects the con-
version of surface electromyographic data to audible speech. I
willl perform recordings using a novel data acquisition proto-
col and develop a real-time low-latency EMG-to-Speech con-
version system and then use and evaluate this system in feed-
back experiments. A proposed timeline including information
on what work has already been completed is presented in the
conclusion of this extended abstract.

1. Introduction
Audible speech – be it face to face or via telephony – is the
primary way in which humans communicate with each other.
With advancements in computing power and speech technology
research, speech communication has become even more im-
portant as speech-based man-machine-interfaces have become
ubiquitous. Where available, speech interfaces offer a natural,
mobile, hands- and eyes-free alternative to touch-based means
of interaction.

Most people, in most situations, do not have any trouble us-
ing these speech interfaces – however, there are exceptions to
this rule. In places where silence is expected, such as in a li-
brary or on public transport, speech interfaces cannot be used.
They also fail to work in environments where background noise
drowns out the speech signal – i.e. on a factory floor. Finally,
people who cannot produce speech, e.g. laryngectomees, can-
not use speech interfaces at all.

In those situations, where regular speech interfaces fail to
deliver, Silent Speech Interfaces (SSIs) – speech interfaces that
do not rely on the presence of an audible acoustic signal to func-
tion – can continue to function, expanding the scope of situa-
tions in which speech can be used to communicate.

SSIs have been built using many different modalities – ex-
amples include ultrasound [1, 2], permanent-magnetic articu-
lography [3], microwave radar [4], surface electromyography
(sEMG, with muscle movement [5] or sub-vocal [6]), non-
audible murmur recorded with a throat microphone [7] or even
electrocorticography [8].

In my thesis, I focus on one specific type of SSI – the di-
rect conversion of surface electromyographic signals to audible
speech, or EMG-to-Speech for short.

In previous work [5], such interfaces have been built, with
some success, to operate and be tested entirely off-line, with no
limits on available training data and time. It is, however, known
that there are differences between speaking modes – articulatory
muscle movements differ between modal (i.e. audible) speech
and silent speech. This difference is caused by a lack of audible
feedback [9] when speaking silently – humans would usually
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use their own perception of their spoken voice to adjust their
articulation, this of course isn’t possible when no audible speech
is produced.

The goal of my thesis is to produce a workable silent-
operating and low latency EMG-to-Speech system that is (un-
like an off-line silent speech system) capable of producing feed-
back and to then use that system to evaluate the effects of feed-
back on users. The system will record multi-channel EMG data
and convert it directly to an audible waveform that can then be
played back to the user with low latency (see Figure 1 for a
broad overview of this system structure). With this user-in-the-
loop system design, I will investigate the effect of feedback on
EMG-to-Speech conversion. The following sections describe
the baseline EMG-to-Speech conversion approach as well as the
requirements for the system described in my thesis.

2. System Overview
2.1. Baseline EMG-to-Speech Conversion

I first describe my baseline off-line EMG-to-Speech conversion
system [10]. The system is based on a neural network conver-
sion approach: It first splits the input data into frames and then
uses a three-hidden-layer deep neural network to convert a set
of stacked EMG time-domain features (TD15 features [11]) to
convert these into audio features (Mel-Frequency Cepstral Co-
efficients [12]) that, using a vocoder, can then be converted back
to an audio waveform.

While the system described is the state of the art in EMG-
to-Speech conversion, it does have shortcomings: While it does
not require any linguistic information, it still does require a
large amount of parallel audible training data. Due to differ-
ences in the EMG signal caused by different speaking modes,
silent operation of a system built this way is not possible. Be-
cause of between-session and between-speaker variance in the
sEMG signal, this also means that the system is restricted to
offline operation and evaluation on pre-recorded data.

2.2. Real-Time Operation

One of the requirements for a system that can be used to in-
vestigate the effects of feedback on EMG-to-Speech conversion
is that the system can provide such feedback. To do this, it
has to operate with low latency (ideally close to the electro-
mechanical delay [13]) and in real time. It must possible to
use the system after providing only a small amount of data and
without a lengthy training phase.

2.3. Session Adaptation

My approach to solving this problem is to build a session-
adaptive system with a background model trained from a large
amount of data. This background model can be trained offline as
before, and is then adapted to new sessions (and possibly even
new users) with a small amount of registration data. I evaluate



Figure 1: High-level overview of a user-in-the-loop EMG-to-Speech conversion system.

different models with regards to how well and how quickly they
can be re-trained and with regards to how much data is neces-
sary for this. I also investigate methods for making this system
robust against broken EMG channels, a common problem when
recording with array EMG electrodes.

2.4. Training for Silent Operation

Silent operation is one of the aspects of an EMG-to-Speech con-
version system which feedback may improve by replacing the
audible feedback present in the case of modal speech with gen-
erated speech output, however, having a base system that works
even without feedback is desirable. For this reason, another
topic I explore is how to train a system when parallel audio data
is not easily available.

One approach I take is to record data in a speak-along
setup: Users are first recorded while speaking audibly. Then,
the users are prompted to silently speak along with their previ-
ously recorded voice. Another approach I evaluate is to obtain
alignment data based on lip reading. In one of these ways, I ob-
tain an alignment between audible speech data and silent EMG
data. I then use this parallel data to train a system that works on
silent EMG data. I compare this system with a cross-modally
trained system (i.e. a system that is simply trained on parallel
audible EMG and audio and then evaluated on silent EMG).

3. Experiments
3.1. Data corpus

To build and evaluate my systems, I use different corpora:
• The EMG-UKA [14] corpus, a large set of audible EMG

speech recordings performed with a single electrode
setup, some of which include video recordings.

• The CSL-EMG-Array corpus, a audible EMG speech
corpus that contains several recording sessions per-
formed with an array EMG setup, some of which also
contain silently recorded speech EMG data.

• A new corpus that includes audible EMG (parallel au-
dible speech and EMG) as well as silent EMG (EMG
recorded during silent speech production) recorded us-
ing the speak-along recording protocol described above.

I also perform feedback experiments during which new data for
session adaptation is collected.

3.2. Approaches to Evaluation

Evaluating an EMG-to-Speech conversion system is not an easy
task. In the first place, for paralinguistic parameters such as

intonation, simply comparing the generated signal to a reference
signal is not sufficient – not every deviation from the reference
is necessarily bad. Additionally, in the case of silent operation,
no reference is available.

The gold standard in audio evaluation is, of course, human
listening tests. I perform these for the final, tuned methods to
be evaluated and of course collect human feedback during feed-
back experiments. This kind of subjective evaluation is, un-
fortunately, not practical during development. Here, I rely on
objective measures such as the Mel-Cepstral Distortion Score
and a new measure that I introduce and evaluate, the trajectory-
label accuracy, which compares two intonation trajectories with
regards to speech naturalness.

3.3. Feedback Experiments

I finally plan to use my low-latency real-time user-in-the-loop
EMG-to-Speech conversion system to evaluate the effects of
feedback on users, trying to prove the hypothesis that feedback
improves system output quality as users are able to learn to use
the system.

Specifically, I plan to evaluate two types of feedback: ”Sim-
ple” feedback, where only a speech-related buzzing noise is pro-
duced according to mouth movements, and ”Complex” feed-
back where a fully trained EMG-to-Speech system is used to
provide audio feedback that is as good as possible. I plan to per-
form these feedback experiments with a minimum of three users
per variant, with two recording sessions per user performed on
different days to investigate long-term learning effects.

4. Conclusion
I have described the topic of my thesis: Building a low-latency
real-time EMG-to-Speech conversion system and performing
experiments to evaluate the effect that audible feedback has on
silent speech production and EMG-to-Speech conversion.

Some of the work described above has already been done:
The baseline neural network based system has been built and
brought to state of the art performance, and I have developed a
base framework for the real-time system. Additionally, I have
developed and evaluated a new measure for evaluating the natu-
ralness of generated intonation contours. Currently in progress
is the recording of speak-along audio, which I will then start to
analyze and integrate in all other experiments. The rest of the
experiments and analysis described in this abstract will be per-
formed over the next year, with the goal of completing results
by July 2020.
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