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Abstract
The performance of the state-of-the-art automatic speech recog-
nition (ASR) systems remain fragile in high levels of noise and
reverberation. The noise robustness can be partly addressed
by multi-condition training (utilizing noisy training data from
multiple environments) [1]. In spite of this training, the per-
formance difference between multi-condition train-test and the
clean train-test of ASR is pronounced, which warrants the need
for attaining noise robustness either at speech representation
stage or the training stage. In this work, various unsupervised
speech representation learning approaches are explored, pro-
posed and compared for robust speech recognition system. The
work can be broadly categorized in two parts for representation
learning: robust representation learning (processing the spec-
trogram representation) and representation learning from raw
waveform.

1. Representation learning for robust ASR
The first part of the work deals with obtaining robust represen-
tations for ASR system. It is motivated by the auditory process-
ing studies having shown the importance of modulation filtered
spectrogram representations in human speech recognition [2]. It
involves filtering the input speech spectrogram along the tempo-
ral and spectral axis with filters that retain only relevant speech
information. Inspired by these evidences, we propose speech
representation learning paradigm using data-driven 1-D and 2-D
spectro-temporal modulation filtering technique [3, 4]. In par-
ticular, modulation filters are learned in unsupervised manner
using various generative models.

The framework of unsupervised learning can be divided
into distribution learning, representation learning or clustering
methods [5]. We use convolutional restricted Boltzmann ma-
chine (CRBM) as distribution learning method for unsupervised
modeling [3, 6]. The RBM model assumes a Boltzmann distri-
bution for the joint density function of the observation and la-
tent variable. An autoencoder (AE) is a neural network which
aims at representation learning at the hidden layers by map-
ping the input to the output using mean square error (MSE)
cost [7]. In this work, we explore the use of convolutional au-
toencoder (CAE) incorporating convolutional layers in an AE
for modulation filter learning [8]. A second approach of repre-
sentation learning using generative adversarial network (GAN)
attempts to modify the CAE approach with an additional adver-
sarial cost function. It also aim to use a latent data distribution
to generate the observed data. The model uses a discriminative
loss function (fake versus real) to further correct the generative
model [9]. The convolutional variational autoencoder (CVAE)
minimizes the MSE of the reconstructed data along with a latent
loss [10, 11].

The learning of modulation filters using generative model-
ing framework is shown in block diagram in Fig. 1. The in-
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Figure 1: Block diagram to learn modulation filters from spec-
trogram in Modulation filtering layer of generative model.

put to the network is either 1-D temporal and spectral trajec-
tories [3] or 2-D patches of the speech spectrograms to learn
spectro-temporal characteristics jointly [4, 11]. The modula-
tion filtering layer incorporates convolutional layer with the aim
of learning non-overlapping irredundant set of modulation fil-
ters. We explore and propose several approaches to learn non-
overlapping filters - residual approach (similar to matching pur-
suit algorithm) [3], modified cost function [11], and skip con-
nection based residual approach [12]. The output of the mod-
ulation filtering layer is then fed to the either of the generative
model and the network parameters (including modulation fil-
ters) are iteratively updated using the gradients of the respective
loss function.

The learnt modulation filters are then used to process the
log Mel spectrogram features and the filtered spectrograms are
used as features for ASR experiments on noisy and reverber-
ant speech. In our work, we select the temporal modulation
filter with bandpass characteristic while both the spectral filters
are used for ASR [3]. While this was partly motivated by the
previous studies on human perception of modulation [13], we
observed and validate the claim that the important modulations
for ASR lie in the bandpass region of temporal domain and the
entire modulation range of the spectral domain, much similar to
the human perceptual experiments [2].

The proposed approach is compared with knowledge based
filtering approach such as RASTA filtering [13] and other
noise-robust front ends. Several speech recognition experi-
ments are performed on a set of tasks consisting of databases
with additive noise with channel artifacts (Aurora-4), reverber-
ation (REVERB Challenge) and additive noise with reverber-
ation (CHiME-3). In these experiments, the proposed frame-
work shows significant improvements over the baseline (spec-
trogram) features as well as various other noise robust front-
ends. The different approaches are compared as well and the re-
sults indicate that the generative modeling framework of CVAE
provides the best ASR performance in comparison with other
models [11].



Figure 2: ASR performance in terms of word error rate (WER in
%) in Aurora-4 database (average of all test conditions) using
lesser amount of labeled training data (70%, 50%, 30%).

Semi-supervised ASR training: The application of the pro-
posed filtering for semi-supervised ASR training is investigated
where reduced amounts of labeled training data is available for
ASR. This is partly motivated by the fact that, while data col-
lection in real noisy environments may be relatively easy, the
labeling of noisy data is cumbersome and more expensive than
in clean recording conditions. Given the unsupervised learning
paradigm of the proposed approach, the modulation filters could
be learned from the entire unlabeled training data and applied
for ASR training with the labeled data. We validate the ASR
experiments with reduced labeled data (70, 50 and 30% random
selection of the original training data) and compare the perfor-
mance with baseline ASR system. We observed that the base-
line ASR system of log Mel spectrogram (MFB) features has a
drastic degradation in performance when the amount of training
data is reduced, as shown in Fig. 2. The proposed CVAE fea-
tures using the learnt modulation filters are more resilient to the
reduced amounts of labelled training data for ASR.

Domain specific versus cross-domain filter learning: In a
subsequent analysis, we perform a cross-domain ASR experi-
ment, i.e., we learn the filters from one of the datasets (either
Aurora-4, REVERB Challenge or CHiME-3) and use those fil-
ters to train/test ASR on the other two datasets. The results
suggests that the filter learning process is relatively robust to
the domain of the training data used in the CVAE model.

2. Raw waveform representation learning
The next part of the work extends the unsupervised representa-
tion learning approach directly from raw speech waveform [14].
In particular, the representation learning is carried out as a two-
layer process in CVAE, as shown in Fig. 3. First, an acoustic
filterbank is learnt from the raw waveforms using the first con-
volutional layer in CVAE. We use cosine-modulated Gaussian
functions as acoustic filters with center frequency and band-
width as the learnable parameters and random initialization as
the starting point. The convolution is carried out in time do-
main, and the output of the layer is pooled and log transformed
to obtain time-frequency representation. The next layer learns
the spectral and temporal modulation filters from the obtained
representations as discussed in the first part of the work.

The experiments are performed on Aurora-4 and CHiME-3
dataset. The acoustic filters in the acoustic filterbank layer and
the filters in the modulation filtering layer are iteratively up-
dated using the gradients of the total loss function. The CVAE
is trained using data of different databases separately. From
the filter characteristics, we observed that the learned filter-
bank also has nonlinear relationship between center frequen-
cies and the filter index with more number of filters in lower
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Figure 3: Block diagram of CVAE architecture to learn auditory
filters in Auditory FB layer, and modulation filters in Modula-
tion filtering layer [12].
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Figure 4: Comparison of center frequency of filterbank learnt
using CVAE with center frequencies of Mel filterbank.

frequencies compared to higher frequencies, similar to tradi-
tional acoustic filterbanks, shown in Fig. 4. For both databases,
the time-frequency representation obtained after first layer of
CVAE perform same as Mel filterbank features in ASR, pre-
serving all information such as formant contours, voiced and
unvoiced sounds, even when filters are learnt with a fully un-
supervised objective. The modulation filtered representations
(2nd layer output) as ASR features provides considerable noise
robustness over the acoustic filterbank layer output.

3. Future Work
The ongoing work is fine-tuning the learnt filters for the task of
speech recognition. Since the acoustic filters and modulation
filters are learnt in an unsupervised manner, fine-tuning them
(updating) for the task in hand may further enhance the ASR
system performance, and can make the representation task-
specific. Hence, the transfer learning approach with using learnt
filters as initialization point in ASR may benefit.

In addition, since these filter learning approaches are un-
supervised, the learnt representations may be capturing other
speech characteristics as well, like speaker information, accent,
or language information. Hence, analysis of the obtained repre-
sentation for other tasks may prove to be crucial.
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