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1. Motivation
We focus on a particular type of language modeling which is
known as cross-lingual language modeling because it suffers
both from data sparsity and domain adaption making it very
challenging and meaningful as a research topic. While the neu-
ral network brings about performance gains, it has not success-
fully addressed these two issues since the approach is essen-
tially data-driven. In cross-lingual language modeling, we seek
to find the common structures in both languages, so that learn-
ing one language also helps us in learning another language
which could potentially be under-resourced. We focus our work
on the study of code-switching (CS) language whereby the
speaker is free to use either language, we seek to find the com-
mon structure or mapping space which help us to model both
languages effectively. In both cases, the data is usually sparse,
due to the lack of high-quality alignment or the low occurrence
of such data under the natural circumstance. Code-switching
or code-mixing is an increasingly common linguistic behavior
among bilingual speakers [1].

Intra-sentential CS speech poses a significant challenge to
ASR systems [2]. This is because CS introduces more vocabu-
lary choices at each prediction step due to words from another
language, at the same time, it occurs sparingly and freely with-
out adhering to rigid syntactic or grammatical rules [3]. Speaker
may choose when to and not to switch given the same preced-
ing context. The challenge is further exacerbated because there
are far less CS linguistic resources than monolingual ones. In
general, we rely on large text corpora in written form, such as
newspapers and books, for monolingual language modeling. As
CS takes place mostly in spoken form, we cannot find as much
documented CS text as monolingual text for language model-
ing.

2. Contributions
2.1. Code-switch Language Model

Since the data is sparse and the domains are different, the cur-
rent work [4] focuses on drawing strength from transfer learn-
ing and making use of synthetic data to supplement the real
data. For brevity, in transfer learning, under the setting of CS
language modeling, we adopt a method of pre-training a cross-
lingual embedding space which seeks to map the words in both
languages to a common space. Upon this space, we perform
clustering to supplement downstream tasks. Mathematically,
we seek to address this problem by combining the strength of
auxiliary class and back-off scheme as summarized in the for-
mulation below.

p(wt+1|w<t) = p(wt+1|w<t, ct+1)p(ct+1|c<t) (1)

We realize the above formulation using a recurrent neural net-
work and would expect the predicted ct+1, which is more reli-
able than word prediction with limited data, to provide stronger
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Figure 1: Common Space embedding and class back-off Lan-
guage Model (CSLM). U and UC are the projection matrices.

back-off to the word prediction network. We implement this
model through 1) sharing a common embedding space which
allows for an architectural improvement over the traditional
multi-task based language model and at the same time 2) using
the predicted embedding of the auxiliary class ct+1 as the input
to the word prediction network together with wt (Fig 1). There

Model PPL Dev PPL Eval
RNNLM† [5] 246.60 287.88
FL + OF† [5] 219.85 239.21
FLM† [6] 177.79 192.08
LSTM∗ [7] 150.65 153.06
Multi-task∗ [7] 141.86 141.71
CSLM 128.12 129.85
CSLM + Multi-task 128.54 128.02

Table 1: Language model baseline on SEAME [8] test set. Mod-
els marked with † indicate that training and testing are done on
SEAME Phase I which approximate to 60% of SEAME Phase II
in term of total tokens. Models marked with ∗ indicate training
and testing done on SEAME Phase II.

is 9.7% perplexity reduction between CSLM + Multi-task over
the previous state-of-the-art CS language model Multi-task in
Table 1. CSLM draws strength from pre-trained cross-lingual
word embedding, the successful sharing of this information
from the auxiliary class prediction to the lexicon prediction with
minimal loss and providing strong back-off. Compared to pre-
vious models which use multi-task objective, there is generally
lack of strong back-off scheme. Without a common embedding
space, the lexicon model would have to solve the additional task
of feature extraction since the useful feature from auxiliary class



and lexicon embedding are from different space.

2.2. Synthetic Data Pre-training

For the synthetic data generation, we use linguistic rule which is
analogous to physical rules of a simulator to generate synthetic
data close to the real domain to supplement training [9]. We
show that by constraining the word embedding in a common
space we can make better use of the predicted cluster for word
prediction which significantly reduces the perplexity. This work
is also motivated by language model fine-tuning [10], where a
pre-trained language model is later fine-tuned for downstream
tasks much like the case of pre-training on ImageNet in vision.
Although we do not follow strictly the proposed method such
as using the slanted triangular learning rates and adding a new
task-specific layer, we are motivated by the idea of proposing
a good initial prior so that subsequent task can be improved or
achieve comparable performance with much fewer data. Such
pre-training and fine-tuning technique also have the additional
advantage of faster convergence.

The insertional assumption in Matrix Language Frame the-
ory strongly motivates the use of aligned parallel data. Given a
pair of aligned sentences as shown in Fig. 2, we can randomly
select a few words in Chinese and substitute them with their
aligned counterparts to synthesize a Chinese matrix and English
embedded CS sentence, and vice versa for English.

this is the library of human imagination

这 是 人类 思维 的 图书馆

Mandarin as the matrix language

English as the matrix language

Figure 2: An example of aligned parallel sentences. In the naive
approach, the aligned words are randomly inserted into each of
the matrix language.

The baseline model is the one trained from scratch with
SEAME Monolingual data first and then Train to ensure the
only difference between the models is synthetic data pre-
training.

Table 2: Perplexity of the model under the various training sce-
narios. The synthetic corpus used for pre-training is phrase
aligned with switch probability pcs = 0.7.

Model Pre-training Training Perplexity

Baseline No SEAME Train 219
PreCS1 Synthetic No 359
PreCS2 Synthetic SEAME Train 173
NoCS Parallel SEAME Train 223

The perplexity reduction of the model PreCS2, which is
pre-trained on the Synthetic CS corpus and fine-tuned on Train,
over the Baseline model in Table 2 is 21%. This significant
improvement in perplexity is a positive indication of the effec-
tiveness of the proposed synthetic CS pre-training framework.
Additionally, we tested a model pre-trained with the original
parallel corpora, NoCS, adapted with SEAME Monolingual and

then fine-tuned with Train, which only differs from the pro-
posed fine-tuned model by the data augmentation process. Its
perplexity is 223, that is a bit worse than the baseline. This
shows that data augmentation is necessary and without it, the
mixed-domain data will hurt the target domain model. Further-
more, the pre-trained model without fine-tuning, i.e. PreCS1,
can still give a perplexity of 359, indicating it to be a good prior.

We also conduct ASR experiment on the SEAME database
with 101.1hrs of training and 11.5hrs of evaluation. The
ASR system is set up according to [11], whereby the acoustic
model is based on time-delay neural network and the language
model is trigram. The best WER for the system is 25.25%. To
show that the reduction in perplexity also translates to reduc-
tion in WER, we perform lattice rescoring using the Synthetic
CS model. Our pre-trained language model, without the adap-
tation phase, is fine-tuned on the Train transcription used in the
ASR. The WER dropped from 25.25% to 23.80%, an absolute
improvement of 1.45%. To take away the improvement due
to RNN language model, we also perform lattice rescoring us-
ing a RNN language model without pre-training. Its best WER
is 24.11% which is higher than the WER using Synthetic CS
model and this shows that the proposed method has practical
benefit to the downstream tasks such as ASR.

3. Future Works

There are various cross-lingual word embedding derivation
techniques and they can be classified into two major categories.
One is characterized by the use of pre-trained word embeddings
in their respective languages and makes use of constraints to
align the two embedding spaces. Another category is noted
for data augmentation and novel training strategies to derive
cross-lingual embedding from the network directly. In term of
aligning the embedding spaces, we note that the current works
focus on finding a transformation matrix [12] and make use
of a bilingual dictionary to constrain the transformation using
the squared loss of the residual matrix. Such methods assume
strongly the isomorphic property of the respective language
structure and this assumption rarely holds, especially in distant
language pairs.

While the neural network training and data augmentation
methods have shown better results and such good performance
is usually attributed to their latent soft-alignment. Such claims
have not been extensively investigated and we cannot gain a
deeper understanding of the linguistic properties captured by
such embeddings. To this end, we propose to focus on part
of the future works on understanding the embedding space in
term of its visualization and the latent linguistic structure. By
devising a set of comprehensive linguistic probes such as the
ones found in [13], we hope to observe the transformation of the
probe words during training and the underlying graph structure
they tend to exhibit.
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