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1. Motivation
Speech-to-Singing (STS) conversion potentially enables vari-
ous innovative applications in music production and entertain-
ment. Synthesizing personalized singing just by reading lyrics
of a song is appealing to users, especially to those who are not
talented singers [1]. However, speech-to-singing conversion is
not trivial [2], as it requires careful manipulation of prosody
and proper mapping of acoustic characteristics from speech to
singing signals [3].

Speech-to-singing (STS) conversion aims at converting
one’s reading speech into his/her singing vocal, in which the
reading speech converted into singing according to the refer-
ence prosody while preserving the speaker identity. The basic
idea of Speech-to-Singing conversion is to find a mapping func-
tion to transform the prosody and spectral features from reading
speech to those of reference singing. Many previous studies fo-
cus on transforming the prosody of speech to singing [1, 4–6],
however, there exist prominent differences between the spectra
of speech and singing, which need to be transformed.

Prior studies have shown that significant spectral differ-
ences exist between one’s speech and singing, such as the
singing formant [7–9] and the resonance tuning by singing F0
[10, 11], which can be characterized by a speaker-specific map-
ping function. In particular, singing formant is a peak around
3kHz in the singing spectrum, formed by clustering of the third,
fourth and possibly fifth formants that represents the energy
concentration [7–9, 12]. Singing formant can always be found
in singing spectrum of trained singers [2, 6, 8], while it is usu-
ally absent in speech spectrum. Therefore, spectral mapping
from speech to singing has become imperative to enhance the
performance of STS conversion.

In the literature of spectral mapping in STS conversion, the
prosody of the singing follows the lyrical alignment of the tem-
plate, while the speech spectrum is directly used for singing
[4, 5] in TSTS. Some spectral conversion techniques were also
studied, for example, to adjust the speech spectrum according
to the vibrato information of template singing F0 [13], or to
make use of the weighted linear and shifting functions [10, 14]
to convert the spectra of vowels from speech to singing. How-
ever, the spectral control model in [10] requires empirical and
hand-crafted settings of parameter values, which is not suitable
for large scale deployment. In addition to these mathematical
adjustments of speech spectrum, GMM and weighted frequency
warping [2] voice conversion methods have also been adopted
for STS spectral mapping. We note that the results reported
in [2] show that they do not outperform the spectral control
model [10].

Inspired by the success of average modeling approach to
voice conversion [15–21], text-to-speech [22–24] and speaker
adaptation [25] technique, we propose to learn a speaker-
independent spectral mapping (SI-ivector) between speech and
singing spectra from multiple speakers using i-vectors for
speaker identity representation. To preserve speaker identity

during the conversion, we augment one’s speech spectra with
her/his speaker identity features (i-vectors) in the network in-
put. According to the studies in [11, 14, 26, 27], the amplitude
of formants in singing voices is modulated in synchronization
with the vibratos in singing F0 contours. Hence, we introduce
the singing F0 and AP as joint features to train the spectral
mapping model. The converted singing spectra are then used
together with prosody features to synthesize the target singing.

Despite speech-to-singing (STS) conversion has been
widely studied, a large database for this task has not been con-
structed yet. We present a Spoken Lyrics and Singing (SLS)
corpus developed at NUS-HLT that can be useful for STS con-
version. This database contains 3,058 utterances of 90 English
songs from 10 professional singers collected in a recording stu-
dio environment. The spoken lyrics corresponding to the songs
are also recorded from the singers to create the database, which
we refer to as NUS-HLT SLS corpus. We highlight a few poten-
tial applications where this corpus can be used for future studies
in our paper [28].

2. Contributions
The main contributions of my research include a) we propose
a data-driven approach to learn a speaker-independent spectral
mapping function that is a departure from the hand-crafting,
simple functional warping or speaker-dependent spectral map-
ping; b) the proposed spectral mapping approach does not need
the speech and singing data from a target speaker during train-
ing, which is more practical; c) the proposed spectral mapping
better retains target speakers’ identity by augmenting i-vectors
as network input; d) the proposed model significantly improves
the naturalness and quality of synthesized singing in compari-
son with baseline approaches in both subjective and objective
evaluations; e) the proposed NUS-HLT SLS corpus has the
high-quality recording of parallel speech and singing with siz-
able number of songs that is suitable for many application.

3. Methodology
We propose to condition a speaker independent model on a
speaker i-vector [29, 30] to maintain the speaker identity be-
tween speaking and singing. During training, given paral-
lel speak-sing utterances from multiple speakers, we first ex-
tract i-vectors features from multi-speaker speech. Then we
obtain singing F0, singing AP and singing MCCs. Aligned
speech MCCs are also obtained by feature alignment between
one’s speak-sing LTC features [6] using dynamic time warping
(DTW) [31]. Then, singing F0, AP and i-vectors are augmented
to the aligned speech MCCs as final training input features. The
paired input features and singing MCCs features from all speak-
ers are utilized to train SI-ivector model, which consisted of two
DBLSTM layers with 512 hidden units in each layer.

At run-time, target i-vector is first extracted from target
speech. Given target (user’s) speech and template singing, input



features are also constructed by concatenating template singing
F0, AP, aligned speech MCCs and target i-vectors. Then the
trained SI-ivector model is used to predict the converted MCCs,
which are then used together with F0 and AP parameters of
singing template to synthesize singing output.

4. Results
We conducted several experiments to validate the performance
of the proposed spectral mapping approach (SI-ivector), as
shown in Fig. 1 and Fig. 2. Zero-effort and SD-MCC denote the
template-based STS without spectral mapping and the speaker-
dependent spectral mapping baselines. SD (trained with singing
F0 and AP) and SI (trained without i-vectors) denote the vari-
ants of SD-MCC baseline and the proposed SI-ivector.
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Figure 1: AB preference results with 95% confidence intervals
for singing quality and naturalness of zero-effort, SD-MCC, SD,
SI and SI-ivector models; NP stands for no preference. (a) SI-
ivector vs. Zero-effort; (b) SD vs. SD-MCC; (c) SI-ivector vs.
SD; (d) SI-ivector vs. SI.
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Figure 2: XAB preference results with 95% confidence intervals
for synthesized singing similarity of zero-effort, SD-MCC, SD,
SI and SI-ivector models; NP stands for no preference. (a) SI-
ivector vs. Zero-effort; (b) SD vs. SD-MCC; (c) SI-ivector vs.
SD; (d) SI-ivector vs. SI.

Both AB and XAB preference tests indicate that the pro-
posed SI-ivector outperforms zero-effort, SD-MCC baselines,
SD and SI. This confirms the effectiveness of the proposed
model in terms of improving both singing quality and speaker
similarity. This also suggests the proposed model with i-vectors
can be beneficial to the preservation of target speakers’ iden-
tities. Additionally, the superiority of SD over SD-MCC indi-
cates the effectiveness of incorporating singing F0 and AP for
spectral mapping. The synthesized singing samples for different
models can be found in the website 1.

5. Future Directions
We have successfully developed spectral mapping technique
that addresses the issues in Speech-to-Singing conversion.

1http://xiaoxue1117.github.io/sample

However, the approach was developed with some specific con-
strains, such as the need of parallel speak-singing data in spec-
tral mapping, and the certain distortion in the process of synthe-
sizing singing by WORLD vocoder. To generalize the proposed
method and to enhance the quality of synthesized singing, some
issues need to be addressed in the future work.

5.1. Parallel-data Free STS Conversion by Singing PPGs

It is difficult to collect parallel speak-sing database in real
world applications for the proposed SI-ivector model. Thus,
we propose a parallel-data free STS conversion by making use
of singing Phonetic PosteriorGrams(PPGs) [32], which hasn’t
been explored in STS conversion. We extract singing MCCs
and corresponding singing PPGs to train a conversion model by
DBLSTM. The singing PPGs can be obtained by singing ASR
system or applying speech ASR directly. At run-time, the user’s
speech PPGs, that is extracted from the speech ASR and then
aligned with singing template, will be fed into the trained con-
version model to obtain the converted MCCs. As the model is
trained by singing data, we expect it can capture singing cor-
relations between PPGs and MCCs in the conversion process.
There is no parallel speech and singing data required for train-
ing, and only user’s speech and singing template are parallel for
test.

5.2. Singing Synthesis by WaveNet Vocoder in STS conver-
sion

The WORLD vocoder is utilized to synthesize singing in
the proposed spectral mapping for STS conversion, but the
WORLD vocoder suffers from the problems that it loses phase
information and temporal structure of the synthesized singing,
and has many prior assumptions. WaveNet [33] was proposed
to generate speech audios directly without any assumptions.
WaveNet recovers the lost phase and temporal information of
speech voices, thus generating higher quality speech output
[34, 35] in voice conversion. Therefore, we apply WaveNet
vocoder to replace WORLD vocoder in STS conversion, aiming
to obtain more natural sounding singing output. The usage of
WaveNet for singing synthesis has never been investigated, and
the incorporation of WaveNet vocoder with the proposed spec-
tral mapping model improves the quality of synthesized singing.

5.3. CycleGAN-based alignment-free speaker-independent
STS conversion

To directly utilize speech and singing data for STS conversion,
we propose to use CycleGAN to find optimal pseudo pair from
unpaired speech and singing data. The CycleGAN-based STS
conversion will not require any alignment technique, which is
still a difficult task in STS conversion. We aims to make use
of multi-speaker speak-sing data for CycleGAN training. How-
ever, if several speakers data is used, the speaker identity is dif-
ficult to keep. Hence, we propose to design a trainable speaker
identity network inside CycleGAN and further device the loss
function accordingly.
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