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1. Introduction and motivation
Many speech technologies contain speech generating stage,
such as text-to-speech (TTS), voice conversion (VC), speech
enhancement (SE). Recent advances in deep learning based
methods significantly improve the performance of these tech-
nologies [1, 2, 3, 4, 5, 6, 7, 8].

So far, even though various successful deep learning based
speech processing methods have been proposed, most of the
systems can achieve only one task. For each problem, the net-
work architecture is designed for the targeted task only and in-
volves a long period of tuning specifically for the problem. This
procedure needs to be repeated for different tasks, and this re-
strict the powerful effect of the neural network. The question is
can we create a unified deep learning model to solve tasks cross
multiple speech technologies.

We see that theoretical differences between these technolo-
gies are currently becoming much smaller than their original
narrow definitions. To give a few examples, the recent advanced
high-performance VC systems gain from the use of the phone
posteriorgram (that is, a continuous phone representation) of in-
putted speech [9]. There was also an attempt to use both the
spectrum features and phone posteriorgram to further improve
the performance of voice conversion [4]. We can also see simi-
lar trends for TTS. The end-to-end TTS system sometimes also
uses phone-embedding vectors as the input instead of letter in-
puts [3, 10]. There was also an attempt to use a reference au-
dio signal as the additional input for Tacotron to transfer the
prosody of the reference audio into synthetic speech via a refer-
ence encoder [11].

Given the above trends, we strongly believe that we can
construct one model shared for multi-task. We assume that the
speech generation related tasks can be divided into two parts: an
input encoder and an acoustic decoder. The difference among
the different tasks is the input. For example, the input of TTS
is text characters while that of VC and SE is acoustic features.
The model can be thought of as an encoder-decoder model that
supports multiple encoders. The role of multiple encoder net-
works is the frond-end processing of each type of input data and
the role of a decoder network is to predict acoustic features re-
quired for waveform generation. Our initial work starts with the
joint training model for TTS&VC [12].

2. Joint training framework for TTS&VC
Inspired by the success of end-to-end TTS models, we adopt
architectures similar to Tacotron for the encoders and decoder.
More specifically, we have two encoders that encode different
inputs and a shared decoder that predicts the acoustic features,
followed by the generation of high-quality waveform signals
based on WaveNet, a generative model for raw audio waveforms
[13].The other contributions of our work are as follows. First, to
achieve better TTS performance with a small amount of train-
ing data, we adapt a pre-trained TTS model to a target speaker.

Second, for voice conversion, we train a many-to-one conver-
sion to increase the size of training data while restricting the
use of parallel data.

Our proposed multi-source Tacotron model is illustrated in
Figure 1. It consists of a TTS input encoder, a VC input en-
coder, and a dual attention mechanism-based acoustic decoder
followed by a WaveNet vocoder.

Both TTS input and VC input encoders have the same archi-
tecture, which includes a pre-net and a CBHG network. Each
encoder transforms the corresponding input sequences into a
fixed dimension state vector and a set of encoder output vec-
tors.

The decoder of our model consists of a pre-net, an attention
RNN layer, and a decoder RNN layer. Since a character embed-
ding sequence and mel spectrogram have different time scales
and we have to cope with the asynchronous input sequences,
we use a dual attention mechanism. Two independent attention
mechanisms Attt and Attv are used for transforming the out-
puts of the TTS and VC input encoders into context vectors,
respectively.

Networks with multi-source inputs can often be dominated
by one of the inputs [14]. In our proposed framework, since
mapping from a source mel spectrogram to target mel spectro-
gram is much easier than mapping from a character embedding
to a target mel spectrogram, the model will be dominated by
the mel spectrogram input. To alleviate this problem, one of the
following input types is randomly chosen during training: char-
acter embedding only, source mel spectrogram only, or both of
the inputs to ensure that we only give specific input information
to the decoder. To achieve this, we introduce a random masker
for indicating which input to use during the training. Using the
masker, we set the context vector that belongs to the unused
input types to zero.

We jointly train the multi-source model with two inputs by
using the dual attention mechanism. This mechanism allows the
model to extract information from both character embedding
and mel spectrogram inputs, even when one of them is absent,
or the two of them are not time aligned. Given the different
kinds of input to our proposed framework, we can choose which
task should be achieved by setting the masker. If we use only the
character embedding input, the system becomes a TTS model.
If we use only the source mel spectrogram input, the system
becomes a VC model. If we use both of the inputs, we can see
this as a hybrid model of TTS and VC.

3. Results discussion
The results for speech quality and speaker similarity are shown
in Figure 2 and Figure 3. We evaluated our model and compared
it with the following systems.

• TTS: Stand-alone model of adapted TTS system

• VC: Stand-alone many-to-one VC model using same
source speakers and target speaker
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Figure 1: Model architecture of our proposed multi-source sequence-to-sequence model for training TTS & VC simultaneously. Random
maskers are applied to all decoder steps.
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Figure 2: MOS results with 95% confidence intervals for speech
quality

• Hybrid TTS: Proposed model with only text input

• Hybrid VC: Proposed model with only source speaker’s
speech input

• Hybrid TTS & VC: Proposed model with both text and
source speaker’s speech inputs

It was observed that our proposed model worked for both
the TTS and VC tasks. We can see that the hybrid VC sys-
tem outperformed the VC stand-alone system in terms of both
speech quality and speaker similarity. This indicates that our
proposed model improved the performance of VC. However, the
MOS results for the hybrid TTS system were worse than those
for the TTS stand-alone system. We can hypothesize several
reasons for this. First, the current multi-source model might
still be over-fitting to the VC task. Second, it might not have
sufficient parameters for doing both the TTS and VC tasks. We
may need to increase the number of parameters especially for
the TTS task. Third, random selection may not be the best strat-
egy for the maskers of the input encoders.
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Figure 3: MOS results with 95% confidence intervals for
speaker similarity.

4. Future works
From the experimental results we can see that even though our
shared model can achieve both TTS&VC tasks, it still not suf-
ficient for both tasks. A better seq2seq network architecture
may need to be conducted, such as Tacotron 2 [15]. To alleviate
the over-fitting problem, we need to investigate a better train-
ing strategy and scheduling of the maskers for the joint training
stage, and a better attention mechanism of the decoder. We may
also extend our work for other speech technologies, such as SE.
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