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1. Introduction
Knowledge of speech production process has been useful in
several areas such as phonetics, linguistics, speech pathology
and speech technology. In fact, the availability of the knowl-
edge of the production process of speech signal, distinguishes
it from other natuaral signals like radar, image etc.. This allows
the speech signal to be analyzed or processed in non-statistical
methods as well.

The focus of my thesis is to reliably extract production re-
lated information from a given speech signal and use this infor-
mation to address certain tasks of speech technology.

This report is organized as follows. Certain acoustic fea-
tures that reflect underlying speech production processes are de-
scribed in Sec. 2. These features have been ussed in some of
my previous studies. These studies are briefed in Sec. 3. Sec. 4
discusses some potential areas where the information described
in Sec.s 2 and 3 can be useful, followed by acknowledgements
in Sec. 5.

2. Acoustic features for extracting speech
production information

Acoustic features described in this section are extracted using
methods such as Zero Frequency Filtering, Zero Time Window-
ing and Single Frequency Filtering. Detailed descriptions of
these methods can be found in [1], [2] and [3] respectively.

2.1. Excitation source based acoustic features

2.1.1. Glottal Closure Instants (Epochs)

Epoch locations are extracted using zero frequency filtering
(ZFF) method [1]. This method involves passing the differ-
enced speech signal through a cascade of two zero frequency
resonators (ZFR). The ZFF signal clearly shows sharper zero
crossings around the epoch locations. Hence the negative to
positive zero crossing instants in ZFF signal are called epochs.
The features of the glottal source of excitation derived from ZFF
signal are as follows:

2.1.2. Strength of excitation (α)

Slope of ZFF signal around epochs gives a measure of the
strength of impulse-like excitation (α). α corresponds to the
rate of glottal closure [4]. Sharper the glottal closure, higher is
the value α and vice-versa.

2.1.3. Energy of excitation (β)

Energy of excitation (β) is computed as the energy of the ZFF
signal within a window length of 3 msec, centered at every
epoch location (1.5 msec on each side of epoch). Window
length of 3 msec is considered around each epoch to capture the

predominant excitation source information around the epoch lo-
cations.

Epochs extracted from a given utterance using ZFF signal,
the values of α and β for that utterance are shown in Figure 1.

2.2. Vocal tract system based acoustic features

Spectral characteristics of the vocal tract system are extracted
using Zero-time windowing (ZTW) method [2]. Using ZTW,
spectral information can be obtained with high spectral and tem-
poral resolution at any instant of time, even for speech segments
less than 5 msec. Spectral features derived from the Hilbert
Evelope of Numerator Group Delay (HNGD) spectrum are de-
scribed below:

2.2.1. Dominant resonance frequency (DRF)

Dominant resonance frequency (DRF) refers to the frequency
of the dominant peaks in the obtained HNGD spectrum, as they
represent the dominant resonances of the vocal tract system [5].

2.2.2. Dominant resonance strength (γ)

Dominant resonance strength (γ) is measured as the magnitude
of the HNGD spectrum at DRF.

2.2.3. Slope of dominant resonance frequency (Fsl)

Slope of dominant resonance frequency (Fsl) refers to the first
order difference of the DRF values at epochs. Here absolute
value of slope is considered.

2.2.4. Slope of dominant resonance strength (γsl)

Slope of dominant resonance strength (γsl) refers to the first or-
der difference of the γ values at epochs. Here absolute value of
slope is considered.

The values of DRF, γ, Fsl and γsl extracted for a given
speech utterance are shown in Figure 2 respectively.

2.3. Single Frequency Filter envelope and phase only signal

The objective in Single Frequency Filter (SFF) [3] is to derive
the amplitude envelope of the signal as a function of time at a
desired frequency component. The SFF is performed at fs/2
(fs=sampling frequency) for each frequency component, after
frequency shifting the signal. This ensures that the filter charac-
teristics remains same for all the frequency components. Since
the SFF is performed using a resonator at fs/2, whose pole is
located close to the unit circle, the effect of other frequency
components are reduced significantly.

We use the phase information φk[n] obtained from the SFF
spectrum to reconstruct the speech signal. We replace the enve-
lope values ek[n] with one and then use the phase to reconstruct
the speech signal. This signal is called as phase only signal. For
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Figure 1: Acoustic features from ZFF signal (a) Speech wave-
form for an utterance “ ..ma/ nucl...”. Manually marked
phoneme labels are given above the signal. (b) ZFF signal
along with hypothesized epochs at the positive zero crossings
of the ZFF signal, (c) strength of excitation (α) values around
epochs, and (d) energy of excitation values (β) around epochs.
X-axes represent time in seconds.

detailed analysis please refer to [6]. Figure 3(a) shows a speech
signal s[n] along with phase only signal (Fig. 3(b)).

3. Studies previously done
α and β are generally high in sonorant regions. In the range of
0 - 900 Hz, DRF and γ values are higher for vowels than other
sounds. DRF values are lower for nasals compared to other
speech sounds. SFF based phase only reconstructed signal en-
hances, in the temporal domain, every segment in a speech sig-
nal which can be used to locate sounds such as weak bursts.
Therefore by analyzing acoustic properties of different speech
sounds using features described in Sec. 2, the following prob-
lems were addressed:

• sonorant segmentation [7],

• vowel landmark detection [8],

• locating burst onsets [6] and

• nasal detection [9].

A snapshot of results obtained in these studies are presented
in Table 1. For detailed information, please refer to the papers
of respective studies mentioned above.

4. Future work
Knowledge of category of speech sound is critical in many ap-
plications. For example, noise affects each sound category in
a unique manner. Therefore one potential area to use above
knowledge is near end speech enhancement where we are look-
ing to modify clean speech based on sound categories in order
to make it more intelligible in noisy conditions.
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Figure 2: Dominant resonance frequency based acoustic fea-
tures. (a) Speech signal with manually marked phoneme labels,
(b) dominant resonance frequency (DRF) values, (c) dominant
resonance strength (γ) values, (d) slope of DRF (Fsl) values,
and (e) Slope of dominant resonance strength (γsl) values at
epochs. X-axes represent time in seconds.
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Figure 3: (a) Speech signal for the utterance ‘aptitude’ (phone
boundaries are marked using dashed line). (b) Signal recon-
structed using phase only information.

Table 1: Previous studies made by the author along with the
corresponding results obtained.

Task Evaluation Measure Result (%)

Vowel
Landmark Detection

Precision 91.71
Recall 94.77
F Measure 93.21

Sonorant
Segmentation

Accuracy 93.95
True Positive
Rate (TPR) 94.47

False Alarm
Rate (FAR) 7.53

Locating
Burst Onsets

% identified within
a deviation of 10ms 79.2

Nasal Detection TPR 91.49
FAR 16.58
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