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1. Introduction 

Speech functions, as an incredible manifestation of human 

intelligence, entail intricate coordination of brain network 

dynamics across temporal, spatial, and spectral scales [1]. 

Current brain investigation techniques such as functional 

magnetic resonance imaging (fMRI), positron emission 

tomography (PET), electro- and magnetoencephalography 

(EEG/MEG) have revealed multi-facets of brain activities and 

supported our understanding of speech processing from 

different perspectives [2, 3]. However, a systematic framework 

incorporating all three of temporal, spatial, and spectral aspects 

as well as relate them to cognitive-behavioral responses is still 

yet to be constructed.     

1.1. Motivation of research 

To provide a comprehensive view of the whole-brain, whole-

range network dynamics during speech processing from the 

temporal, spatial, and spectral aspects, this study is designed to 

combine different modalities, such as brain imaging, 

electrophysical and behavioral data with advanced brain 

network analysis and multimodal data integration methods in 

various speech perception and production tasks. The systematic 

revelation and the insights from speech neuroscience are 

promising for the rehabilitation of patients with speech 

disorders caused by brain injury, but also for the development 

of human-computer interaction technology and the progress of 

artificial intelligence with speech communication. 

1.2. Key issues identified 

To track the transient spatiotemporal brain dynamics during 

speech processing is a highly challenging task. The difficulties 

lie not only in the unsatisfactory spatial and temporal precision 

limited by different modalities of brain investigation techniques 

but also in the complexity of integrating those different 

modalities of data into a systematic framework, letting along 

relating the neurophysiological data with cognitive behaviors. 

To date, the most prevailing speech processing model – the 

dual-stream model indicated the regional functionality and 

information flow pathways. However, temporal dynamics and 

frequency-specific oscillatory patterns are still unclear. 

Moreover, speech processing is not supposed to be a simple 

feedforward procedure where incoming linguistic information 

gradually transforms from a string of linguistic segments into a 

comprehensive concept. Rather, contextual information from 

long-term memory such as semantics and syntactic can also 

provide feedback information, thus affecting the perception of 

sensory input [4, 5]. Therefore, we need to clarify how such 

bidirectional interactions operate on neural substance and 

oscillatory patterns for smooth communication. 

2. Methods 

2.1. Data acquisition  

This study utilized a multi-modal data acquisition system to 

simultaneously record brain waves, eye movement, and speech 

signals while participants perform speech perception and 

production tasks. Figure 1 demonstrated the procedure of a 

natural reading process. EEG signals were recorded from the 

scalp of the participants with a 128-channel Quik-Cap 

(Neuroscan, USA) at 1000 Hz. Eye movements were recorded 

via a monocular pupil tracking system (Eyelink 1000, SR 

Research Ltd., Mississauga, Canada) at 100 Hz. The speech 

signals from articulation were recorded using a microphone 

(SONY ECM MS957) at 44100 Hz. 

 

Figure 1: Schematic diagram of data acquisition. 

2.2. Behavioral analysis 

Behavioral analyses were conducted on the eye movement and 

speech signals by segmenting the eye onset and offset as well 

as speech onset and offset. The time indexes of these on- and 

off-sets are indicative of different stages of cognitive 

processing and provide references for the subsequent neural 

investigation. 

2.3. EEG source reconstruction 

The raw EEG signals recorded directly from the scalp is a 

summed electrical field potential from cortical neurons blurred 

with non-brain artifacts, it suffers from a high risk of false 

positives from volume conduction and difficulty in anatomical 

interpretability [6]. Thus, we performed independent 

component analysis (ICA) [7] to separate brain sources from 

those biological artifacts. Equivalent current dipoles (ECD) of 

the effective components were then computed using a boundary 

element model (BEM) [8] for cortical localization. 



2.4. Brain network analysis 

Granger-Causality (GC)-based effective connectivity analysis 

is used to calculate the information flow within brain networks 

based on the analysis of prediction errors of autoregressive 

models.  The estimator implemented in this study is the direct 

directed transfer function (dDTF) which is the product of a full-

frequency directed transfer function (enabling more 

interpretable comparisons of information flow at different 

frequencies) and the partial coherence (a conditional coherence 

that cannot be explained by a linear coherence between 

components) [9]. A segmentation-based adaptive multivariate 

auto-regressive model was constructed with a 500-ms sliding 

window and a step size of 25 ms. The model order of 10 was 

selected based on the Vieira-Morf lattice algorithm. 

Frequency-specific network analyses were also conducted 

to examine functional specifications for brain network 

dynamics in different frequency bands. Moreover, phase-

amplitude coupling (PAC) [10] and intersite phase clustering 

(ISPC) [11] were performed to investigate the cross-frequency 

coupling phenomenon and bidirectional information interaction 

which were carried by different rhythmic oscillations.  

2.5. Multimodal integration  

To relate different modalities of brain activities, we introduced 

an fMRI-based Morphological and Connectomic Atlas of 

Human Brain Functions into a representational similarity 

analysis [12]. Each fMRI template corresponds to a network 

distribution for a specific function. By calculating the similarity 

between the fMRI network distribution and each frame of the 

previously constructed EEG-based connectivity by means of 

correlation coefficient, we could estimate the activity strengths 

of that fMRI-defined functional network that presented in our 

real-time EEG signal at that time point. And with the point-by-

point time series of such activity strengths, we could also 

compare the temporal significance of a specific functional 

network along the whole speech perception procedure. 

3. Discussion of results 

By examining the regional multi-frequency oscillatory patterns, 

frequency-specific brain network dynamics, and cross-

frequency coupling characteristics, our results revealed a 

hierarchical cortical organization and frequency-specific 

bidirectional information flow patterns. These functional 

networks progressed parallelly for the completion of the 

complex speech perception and production processes.  

 

Figure 2: Hierarchical organization of bidirectional 

interaction in speech processing. 

An overview of our results is illustrated in Figure 2. Two 

significant oscillatory patterns appeared in the frequency-

resolved network dynamics. The first is the oscillatory 

hierarchy of the cortical framework. Consistent with 

convergent evidence [13-18], there is an inverse relationship 

exists between interaction scale and oscillation frequency. 

Specifically, high-frequency oscillations (e.g., gamma and beta) 

with fast cycles are most suitable for binding together fine 

structures within a small patch. High gamma activity was found 

in the visual and auditory cortices for processing sensory details 

that fit into the gamma cycles. Beta oscillations, usually in the 

form of suppression, were commonly observed in the 

sensorimotor regions during the execution of motor output. In 

comparison, low-frequency resonances (e.g., alpha and theta) 

have the advantage of long-range synchronization at larger time 

scales. So, it is optimal for grouping sub-phenetic fragments 

into a meaningful concept at the lexical and phrase levels. 

Moreover, our results showed that each functional stage is not 

dominated by a single frequency band. Instead, they benefit 

from the coexistence of rhythmic oscillation at different 

frequency bands. The co-existence multi-frequencies across 

areas is especially beneficial for exchanging information in 

both feedforward and feedback directions. 

The second pattern is the bidirectional interaction of dual-

stream processing via different frequency channels. Our results 

verified parallel processing in the dual streams regarding its 

spatial functionality, i.e., the ventral stream for speech 

comprehension and the dorsal stream for speech production. 

We further expanded the dual-stream model with additional 

temporal and spectral details. Based on the temporal-spectral 

dynamics, we discovered that neither of the dual streams flowed 

in a one-way direction but were subject to both bottom-up 

integration and top-down regulation. The goal-directed, 

sensory-guided behavior relies on both feedforward and 

feedback interactions between brain regions. These large-scale 

interactions are reflected by the phase coherence and amplitude 

correlation of oscillations between brain regions in different 

frequency bands. 

4. Future plans and road map 

In our future work, we would like to incorporate more 

functional modalities (e.g. electrocorticography (ECoG) and 

magnetoencephalography (MEG), etc.) to complement our 

current study with more precise temporal and spatial resolutions. 

Speech tasks will also be gradually complexified to explore 

different levels of speech processing on the cortical hierarchy.  

So far, our brain investigation of speech perception and 

production functions is conducted in a relatively independent 

manner, which is intended to clarify their separate functionality. 

But indeed, speech perception and production are an evolved 

coherent process that is neither efficient nor likely to work 

independently. So, our next investigation step will integrate 

perception and production in a more natural conversation 

scenario and examine how the speech chain is rolled out 

between listeners and speakers in perception and production.  
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