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Interpretation of neural signals to a form that is as intelli-
gible as speech facilitates the development of communication
mediums for the otherwise speech/motor impaired individuals.
Speech perception, production and imagination often constitute
phases of human communication. The primary goal of our
work is to analyze the similarity between these three phases
by studying electroencephalogram(EEG) patterns across these
modalities, in order to establish their usefulness for brain com-
puter interfaces(BCI). Fundamental syllabic units of speech in
these phases are decoded accurately using temporal modelling
based machine learning approaches generalizing over multiple
sentences, trials, sessions, and subjects. 1

1. Introduction and Contributions
As opposed to invasive(neurosurgical implants) and semi-
invasive(electrocorticogram) BCI modules, EEG-based BCIs
posses comforting prospects because of their noninvasive na-
ture, convenience of recording and effortless deployability[1,
2]. In our work, we aim to investigate the reliability of speech-
induced EEG signals in discriminating between distinct speech-
like units in EEG. Datasets involving three common phases
of communication, namely, speaking, listening, and imagining
speech are considered for the same. Performance accuracies
aside, the proposed framework offers three-fold design level ad-
vantages to potential BCI users as compared to popular speech-
EEG decoding protocols as outlined below.
Large-set Decoding: Majority of works classify a closed-set
vocabulary of units such as words[3, 4] and phrasal blocks[5].
This makes the scalability of the protocol to newer unseen test
instances difficult. In the proposed approach 54 syllables are
used as the fundamental units for recognition, therefore the sup-
ported vocabulary can be very large.
Syllable recognition in continuous conversational speech: Ex-
isting syllable and vowel based classifiers disregard contextual
dependencies by training and testing models on isolated units
rather than continuous speech [6, 7, 8]. The proposed method
performs context-independent decoding of units in continuous
speech-EEG signals across mismatched sentences.
Model Generalization: Most neural decoding approaches per-
form binary classification [9, 10, 8]. Although there have been
few successful multi-class attempts, they do not consider sub-
ject and session independence [11, 12]. Addressing the con-
cerns of variability due to these factors [13, 14], the proposed
approach provides generalization across multiple subjects and
sessions while performing multi-class decoding.

Summarising, the proposed approach is a novel attempt to
perform multi-class fundamental unit classification in continu-
ous speech EEG generalizing over multiple subjects and ses-
sions. The methodology involved and its reported results are
published in [15].

1I thank my advisor, Hema A Murthy from IIT Madras and collab-
orative advisor Mriganka Sur from Massachusetts Institute of Technol-
ogy for their valuable guidance in this work.
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Figure 1: CWRT based 2LDP: Block 1: EEG data ini-
tial segmentation using manual markers obtained from the in-
put/output speech signals, followed by iterative boundary cor-
rection. Block 2,3: CED algorithm to make all the templates
equilength. Block 4: Average across the equilength templates
to obtain the class-wise best reference template(BRT). Block 5:
First level 2LDP distance score calculation Block 6: Second
level path tracking and allocation of class labels.

2. Results
2.1. Current Status of work

Neural decoding of speech using non-invasive techniques ne-
cessitates optimal choice of signal analysis and translation pro-
tocols. By employing selection-by-exclusion based tempo-
ral modelling strategies, an optimum feature-model pair was
chosen for the task of speech-EEG unit classification[16].
Features derived from short term energy(STE), periodogram,
spectrogram and multi-class common spatial patterns(MCSP)
were considered in conjunction with classifiers built us-
ing dynamic programming(2LDP), Gaussian mixture-hidden
Markov models(GMM-HMM) and convolutional neural net-
works(CNN)(Figure 2a). Since our datasets involve multiple
sessions and subjects, the variability induced by them is also ad-
dressed by formulating three cases, namely, intra-subject+intra-
session(Case-A), intra-subject+inter-session(Case-B) and inter-
subject(Case-C). Real-time decoding devices require accurate
operation in Case-C scenarios. The novel method proposed
in this work using common word reference template(CWRT)
matching algorithm coupled with 2LDP classifier as illustrated
in Figure 1, performs best for Case-C. Input EEG data is
segmented using markers from the corresponding continuous
speech stimuli and CWRT is implemented to obtain one refer-
ence template from the many training templates across trials.
Given the test signal and the references, 2LDP determines the
sequence of patterns and their boundaries. At the first level, the
algorithm matches each pattern with an arbitrary portion of Ts
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(a) 2LDP(top pane), GMM-HMM(middle pane), CNN(bottom pane) (b) Visualization of temporal structures of syllable like units(SLU)
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(c) 2LDP- Case A,B,C generalization (d) LOS accuracy for 30 subjects
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Figure 2: Visualization and classification of Syllable like units averaged over multiple subjects and sessions across five
Datasets(DS1,DS2a,DS2b,DS2c,DS3). a,Classification accuracy comparison for feature-model pair variants, b, Mean Best Tem-
plate(MBT) plotting for three syllable classes -”a”, ”am” and ”give”, c, Protocol Generalization abilities for 3 cases of testing,
d, Leave one subject out testing performance across datasets using 2LDP and GMM-HMM classifiers, e, Accuracy boost provided by
incorporating context modelling approaches.

and generates a matrix of scores. The second level then pieces
together the individual scores to minimize the overall accumu-
lated distance and backtracks the optimal path and sequence of
patterns matching Ts[17].

2.2. Statistical Results

DS1, DS2 and DS3 comprise of input sentence cues formed us-
ing a set of 25, 25 and 54 syllables respectively occurring in
varying contexts. To differentiate between the different phases
of speech-based cognition in DS2, we define DS2a as the hear-
ing phase, DS2b as the imagining phase and DS2c as the speak-
ing phase. EEG signals are classified in syllable, word, phrase
and sentence levels to discern the fundamental unit that best
captures distinct speech signatures. Classification of fundamen-
tal syllable-like units(SLU) yield best results and also posses
unique temporal patterns when visualized(Figure 2b).

EEG signals from different electrode cap regions and bands
are studied to understand their importance in speech-induced
EEG. Results suggest that temporal and parietal region chan-
nels consistently perform better than channels extracted from
other regions(average absolute accuracy gain of 1.85% and
1.68% over other regions respectively). Concerning the fre-
quency bands, the gamma band gives the best classification
performance(absolute gain of 2.62% over other bands). Given
these observations, the two best performing regions and bands
in combination were extracted and analysed across all datasets.
Figure 2c compares the SLU classification accuracies using
2LDP for the three cases of generalization testing(inter/intra
Sessions and Subjects). Leave-one-subject(LOS) out accu-
racy(Case C) is plotted for all 30 subjects in Figure 2d for the
audition phase. The reported mean and chance accuracies for
every dataset are also marked for comparison.

Transcription level modelling determines which linguistic
paths are more probable than the others and helps improve the
confidence and correctness of the decoded output. It is ob-
served that incorporating a bi-gram context model built using

the wall street journal(WSJ) text vocabulary greatly improved
the performance(Figure 2e). In order to comment on limited
vocabulary applications, a transcription-level language model
built using the data-specific text vocabulary was used for de-
coding. This further improved the decoding accuracy by 8.8
± 1.7% across subjects as outlined by examples given in Table
1. The average GMM-HMM decode duration per test trial is
10sec±σ (3sec), making the protocol ideal for online decoding
of speech EEG for the convenience of BCI users.

Significantly higher than chance accuracies are recorded for
single trial multi-unit EEG classification using machine learn-
ing approaches over five datasets across 30 subjects. In addi-
tion to result-based experimentation, a variety of control checks
are also performed to validate the implemented protocols. In
conclusion, given a limited vocabulary and a strict language
model, there is a growing possibility of modelling naturalistic
interfaces by capturing distinct speech EEG signatures.

2.3. Future Work

The transcribed outputs from the decoded EEG signals can
be synthesised as speech using a trained text to speech syn-
thesizer thus making it a functional communication inter-
face. Further, experimental setup for online decoding of 4-
channel MUSE imagined speech-EEG data is in progress.
The data that support the findings of this study and de-
tails of their elicitation protocols are freely available in
https://www.iitm.ac.in/donlab/cbr/cospeech eeg dataset/.

Table 1: Single trial decoding of perception phase EEG signals.
o: Original sentence, d: decoded sentence. Substitutions are
highlighted, deletions are striked out and insertions are in red.

Syllable error rate Original sentences Vs decoded sentences

wd∼50%
od∼30%

o: nice to meet and know you
d: nice to meet and know you there

wd∼60%
od∼40%

o: what is wrong with that
d: there is wrong with him
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