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1. Motivation
Speech emotion recognition (SER) is an active area of research
with potential applications in healthcare [1, 2], customer cen-
tres [3], and designing naturalistic spoken dialog systems [4].
Despite signi�cant progress in machine learning (ML), the per-
formance of state-of-the-art SER systems is quite low. Data
scarcity is one of the major challenges in this �eld [5]. Available
SER corpora are relatively small in size compared to datasets
in computer vision and other speech-related applications such
as speaker identi�cation and speech recognition [4]. �is also
causes poor generalisation in SER systems against cross-corpus
and cross-language se�ings which limits their performance and
deployments in real-life [6].

To solve these issues, we focus on the utilisation of deep
representation techniques for SER systems. Particularly, we
aim to develop deep learning (DL) models that learn be�er emo-
tional representation from fewer labelled data samples and can
be trained in semi-supervised or weakly supervised se�ings to
enables the e�ective utilisation of abundantly available unla-
belled data to improve performance as well as generalisation
of the system. Besides, the generative modelling ability of Gen-
erative adversarial networks (GANs) [7] is utilised to generate
synthetic data to augment SER systems.

2. Contributions
�is section brie�y discusses the contributions made towards
achieving the improved performance of SER systems.

2.1. Utilising Deep Architectures

�e performance of SER systems heavily depends on the quality
of input features. A good set of features o�en provides be�er
performance. �erefore, human knowledge-based feature en-
gineering, which focuses on cra�ing speech-related features
has led to lots of research studies in SER. Recently, the trend
of using deep representation learning models for automatic
feature learning is growing in the speech community. �ese
models can automatically learn be�er representations for dif-
ferent speech-related tasks and minimise the dependency on
hand-engineered features. In particular, a combination of con-
volution neural networks (CNNs) and long short term memory
(LSTM) networks have gained great traction in learning repre-
sentations from raw speech. However, the performance of raw
speech based SER models is always less compared to the systems
trained with hand-engineered features. In our paper [8], we
showed the opportunities to improve the performance of raw
speech based SER model by exploiting the properties of CNN
in contextual modelling. We propose the use of parallel convo-
lutional layers to harness multiple temporal resolutions in the
feature extraction block that is jointly optimised with the LSTM

based classi�cation block for the emotion recognition task. Our
results in Table 1 suggest that the proposed construct can reach
the performance of CNN trained with hand-cra�ed features on
both IEMOCAP [9] and MSP-IMPROV [10] datasets. However,
we found that the raw speech based SER system needs more
data compared to the models trained on other speech represen-
tations. �erefore, it is important to utilise data augmentation
or unlabelled data in order to improve generalisation.

Table 1: UAR (%) comparison of proposed approach on raw speech
with CNN trained on hand-engineered feature, source [8].

Models UAR (/%)
IEMOCAP MSP-IMPROV

CNN+MFBs [11] 61.8±3.0 52.6 ± 3.8
Proposed+raw speech 60.23±3.2 52.43 ±4.1

Speech emotion recognition (SER) systems can achieve im-
proved accuracy when the training and test data are identi-
cally distributed, but this assumption is frequently violated in
practice and the performance of SER systems plummet against
unforeseen data shi�s [12]. �is issue can be solved by learning
more complex and generalised representations with very deep
architecture. For this, we proposed a deep architecture built
on DenseNet [13] and highway networks [14] for robust SER.
Our proposed model is a hybrid architecture, where we use a
DenseNet for temporal feature extraction, LSTM for context
aggregation and fully connected layers in highway con�gura-
tion for discriminative feature learning. We comprehensively
evaluate the architecture in [15] against (1) noise, (2) adversar-
ial a�acks and (3) cross-corpus se�ings. Our evaluations on
the widely used IEMOCAP and MSP-IMPROV datasets show
promising results when compared with existing studies and
state-of-the-art models. Table 2 shows the benchmark results;
more detailed analysis can be viewed in our paper [15].

Table 2: UAR (%) of di�erent models, source [15].

Model IEMOCAP MSP-IMPROV
CNN 61.5 ± 2.3 52.6 ± 2.5
CNN-LSTM 62.1 ±1.8 53.1 ± 2.3
DenseNet 63.2 ± 1.7 54.5 ± 1.9
DenseNet-LSTM 63.5 ± 1.5 55.6 ± 1.6
Proposed 64.1± 1.3 56.2 ± 1.5
CNN-LSTM [16] 62.0 –
CNN [17] 61.4 55.3

2.2. Utilising Additional Data

Semi-supervised training of deep models enables the utilisation
of unlabelled data and leads performance improvement of the



system. Use of additional unlabelled data also improves the gen-
eralisation which helps classi�ers to show robustness against
unseen data shi�s in real-time applications. Here, we proposed
a multi-task semi-supervised model [17] that can e�ectively
exploit the abundantly available unlabelled speech data in order
to improve the performance of SER. �e proposed model was
adversarially trained to learn generalised representations for
two auxiliary tasks along with emotion classi�cation as the pri-
mary task. We propose to use speaker and gender recognition
as auxiliary tasks to operate the model on any larger speech
corpus which has speaker and gender labels. We demonstrated
that the SER performance can be signi�cantly enhanced by
simultaneously training emotion classi�cation task with addi-
tional auxiliary tasks having an availability of a large amount
of data. �e proposed model is rigorously evaluated for both
categorical and dimensional emotion classi�cation tasks. Exper-
imental results in Figure 1 demonstrate that the proposed model
achieves state-of-the-art performance on two publicly available
datasets. For more results, our paper [17] can be consulted.

(a) IEMOCAP

(b) MSP-IMPROV

Figure 1: Benchmarking results of the proposed multi-task model
(MTL) against a single task implementation of the same model
(STL), single task implementation by CNN, and a single-task
semi-supervised implementation of an autoencoder (AE) using
leave-one-speaker-out scheme; source [17].

.

Generative adversarial networks (GANs) [7] have gained
a lot of a�ention in the ML community due to their ability to
learn and mimic data distributions. �ey have shown great
performance in image generation [18], translation [19], and
enhancement [20, 21]; and also in speech generation [22], and
conversion [23]. However, the unavailability of larger labelled
datasets causes convergence problems in vanilla GANs while
generating the synthetic feature vector to augment SER systems
[24]. To solve this issue, we propose to use a data augmentation
technique combined with a GAN to improve the generation of
synthetic samples [25]. Particularly, we propose to use data
augmentation technique called “mixup” [26] to train a GAN for
synthetic emotional feature generation and also for learning
emotional representation in compressed size. To the best of
our knowledge, this was the �rst work to investigate mixup to
augment GANs.

�e proposed framework can e�ectively utilise mixup while
training a GAN, which augments the representation learning as

well as synthetic feature vector generation of GAN. We present
a detailed analysis by evaluating the SER performance on (i) a
compressed representation, (ii) synthetic samples, and (iii) by
using generated samples to augment the training data. Results
for within-corpus and cross-corpus se�ing using two emotional
datasets show that the proposed framework performs be�er
compared to recent studies. We trained deep neural network
(DNN) classi�ers for emotion classi�cation using: (i) only real
features, (ii) only synthetic features, and (iii) both real and
synthetic features. Here, real features show the representations
extracted with openSMILE [27] and augmented by the mixup
scheme. Results are reported in Table 3 and 4, which show that
synthetic samples by the proposed model can help improve SER
performance. More results can be reviewed in [25].

Table 3: Results for cross-validation evaluation on IEMOCAP,
source [25].

Studies Real Syn. Real+Syn.
Sahu et al. [24] 59.42 34.09 60.29
Bao et al. [28] 59.48 ± 0.71 46.59 ± 0.75 60.37 ±0.70
Ours 60.51±0.57 45.75 ± 0.81 61.05±0.68

Table 4: Results for cross-corpus evaluation, source [25].

Studies Real Syn. Real+Syn.
Sahu et al. [24] 45.14 33.96 45.40
Bao et al. [28] 45.58 ± 0.40 41.58 ± 1.29 46.52±0.43
Ours 46.0±0.57 42.15± 1.12 46.60±0.45

3. Discussion and Future Works
�e mentioned results of our previous studies on speech emo-
tion recognition show the potentials of using deep representa-
tion learning techniques. We found in [8] that deep models can
capture emotional a�ributes in an end to end fashion trained
directly on raw speech. To achieve robustness in SER, very
deep architectures can be utilised, as validated in [15], which
can learn more complex and robust representation. To increase
generalisation abilities in SER, additional data can be utilised.
Multi-task learning provides a good way to utilise additional
unlabelled data for auxiliary tasks, which lead to performance
improvement (see our paper [17]). Synthetic features/data from
generative models (e.g., GANs) can be utilised to augment SER
systems for performance improvements, as shown in [25].

3.1. Future Works

Future works include exploring self-supervised training of deep
representation learning models. Most importantly, we aim
to use other modalities such as text and visual data in a self-
supervised way. To improve SER performance against cross-
corpus and cross-language emotion recognition further e�orts
are needed. �erefore, in our ongoing work, we are develop-
ing a DL model that can learn corpus and language invariant
representation for e�ective SER.
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