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Abstract
Understanding how humans judge perceived speech quality
while interacting through Voice over Internet Protocol (VoIP)
applications in real-time is essential to build a robust and ac-
curate speech quality prediction model. Speech quality is de-
graded in the presence of background noise reducing the Qual-
ity of Experience (QoE). Speech enhancement algorithms can
improve speech quality in noisy environments. The publicly
available NOIZEUS speech corpus contains speech in envi-
ronmental background noise babble, car, street, and train at
two Signal-to-noise ratios (SNRs) 5dB and 10dB. Objective
Speech Quality Metrics (OSQM) are used to monitor and mea-
sure speech quality for VoIP applications. This work proposes
a Context-aware QoE prediction model, CAQoE, which clas-
sifies the speech signal context (i.e., noise type and SNR) in
order to allow context-specific speech quality prediction. This
work presents context-classification component of the proposed
model. Speech enhancement algorithms are used in conjunc-
tion with an OSQM to estimate Mean Opinion Score (MOS)
of noisy and enhanced samples to train machine learning classi-
fiers to classify the speech signal context. For the different noise
classes tested, a Decision tree classifier has better classification
accuracy.
Index Terms: non-intrusive, speech quality, noise, speech en-
hancement, P.563, MOS, classifier, VAD, VoIP, QoE.

1. Introduction
With the development of wireless networks and growing popu-
larity of mobile devices, adoption of VoIP is increasing. Real-
time speech quality monitoring is essential to provide predic-
tions of the actual speech quality experienced by the users
of VoIP applications such as Google Meet, Microsoft Skype,
and Apple FaceTime. As compared to the tedious and ex-
pensive subjective listening test i.e., Absolute Category Rating
(ACR) [1] to measure speech quality, the objective speech qual-
ity assessment metrics are more practical and faster.

There are two categories of objective speech quality as-
sessment methods, namely; intrusive and non-intrusive. In-
trusive methods e.g. Perceptual Evaluation of Speech Quality
(PESQ) [2], Perceptual Objective Listening Quality Assessment
(POLQA) [3] and ViSQOL [4] are unsuitable for monitoring
real-time speech quality because of the practicalities of access-
ing both the input reference signal and the received signal. Non-
intrusive methods, such as ITU-T P.563 [5] estimate speech
quality using only the received (degraded) signal. P.563 ex-
tracts the dominant distortion class and maps it to a single MOS
score, which describes speech quality on a scale from 1 (bad) to
5 (excellent). An implementation of P.563 is publicly available.
Parametric models e.g. the E-Model [6] are used to estimate
speech quality using network parameters, e.g. network delay
and packet loss and terminal parameters, e.g. jitter buffer over-

flow, coding distortion, and echo cancellation. However, they
do not use the signal and thus are not suited to predict speech
quality based on signal-noise characteristics [7].

For real-time speech quality monitoring, a real-time no-
reference signal-based speech quality model is considered the
most appropriate. No such signal-based, context-aware speech
quality prediction models are described in the literature, mo-
tivating the proposed Context-aware QoE prediction model,
”CAQoE”. The proposed model could be deployed by the inter-
net service providers to continuously monitor the service perfor-
mance quality by detecting impairments and potentially identi-
fying the context. The QoE-aware management actions could
be then taken to maintain the user QoE levels [8].

2. Proposed Model
The outline of the proposed context-aware QoE model is shown
in Fig. 1. The model comprises three main components: (i) a
context-classifier that classifies the speech signal context (i.e.,
noise type and SNR); (ii) a Voice Activity Detector (VAD) to
identify the voiced segments of noisy signal; and (iii) Speech
Quality Model (SQM) which is a collection of noise specific
neural networks trained to evaluate speech quality under spe-
cific noise conditions. The model is based on the hypothesis
that by classifying the noise-type and intensity of the signal be-
ing evaluated can be routed to a quality assessment model that
has been trained and optimised to a particular degradation.

2.1. Context-Classifier

The present work is focused on the context-classifier. The
context-classifier aims to make use of the observation that dif-
ferent speech enhancement algorithms perform better in differ-
ent contexts i.e., with different noise types and SNRs. Each
speech enhancement algorithm uses a different noise estima-
tion algorithms to separate the target speech with varying suc-
cess. Using this knowledge, the model takes the input noisy
signal and processes it using 12 standard speech enhancement
algorithms [9, 10]. Along with the original unprocessed input
signal, we now have 13 variations including the original signal.
These signals are then processed with the objective speech qual-
ity metric (P.563) [5] to output 13 quality predictions (MOS)
that are combined as an input feature vector to a ML classifier.

We anticipated that the classifiers would be able to learn
from the relationship between the unprocessed signal quality
estimates and the enhanced speech quality estimates in order
to correctly classify the noise type and SNR (context). Seven
classifiers, namely; XGBoost (XGB), Random Forest (RF), De-
cision Tree (DT), Logistic Regression (LR), Support Vector
Machine (SVM), K-nearest Neighbors (KNN) and Linear SVC
(Lin. SVC), are investigated to identify the most appropriate
ML classifier component of the proposed model.
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Figure 1: Block diagram of proposed Context-Aware QoE
Model.

2.2. Voice Activity Detection

The second component in the proposed model is a voice activ-
ity detector (VAD). It identifies the voiced segments of the noisy
signal based on the speech feature (spectral centroid) [11]. It is
incorporated into the overall CAQoE model as a pre-processing
stage prior to presenting the signal to the speech quality neural
network component. The VAD used here is based on our pre-
vious work [11] which found that a weighted spectral centroid
VAD is preferred for speech data with environmental noise.

2.3. Speech Quality Estimation

The third component in the proposed model is used to compute
an estimate of speech quality and its performance evaluation.
This component contains a collection of Deep Neural Networks
(DNNs), each trained and optimised for a particular noise class.
The classifier activates the chosen DNN which is then used to
evaluate the noisy signal and output a target value of the pre-
dicted speech quality (MOS) for the noisy signal.

3. Evaluation of the Classifier
The context-classifier takes 30 noisy samples of each noise
types: babble, car, street and train at two SNRs (5dB and 10dB)
from the NOIZEUS corpus [9]. The total number of samples is
240 (30 samples x 4 noise types x 2 SNRs). Each noisy sam-
ple is processed with 12 speech enhancement algorithms and
the unprocessed sample. MOS scores are estimated for these 13
conditions using the P.563 metric. The MOS quality labels are
used as an input feature vector to train a ML classifier to classify
the speech signal context (i.e., the noise type and SNR).

We have 30 samples in each class (where a class refers to
a noise type and SNR combination e.g., Babble 5dB). This re-
sulted in a small amount of data with which training a classi-
fier gave a poor classification accuracy of 35 % for an eight
class classifier. Therefore, we chose to perform binary classi-
fication with imbalanced datasets/classes. Out of eight classes,
we assigned the first class as ”class 0” and the remaining seven
classes as ”class 1”, and labelled it as, e.g. ”Babble 5dB”. Sim-
ilarly, we assigned the second class as ”class 0” and the remain-
ing seven classes as ”class 1”, and labelled it as ”Babble 10dB”.
We followed the same strategy for the remaining classes. To
balance each class, we reduced the size of majority class data
(class 1) equals to minority class data (class 0) using Synthetic
Minority Oversampling Technique (SMOTE) [12]. Data of each
class is divided into 80:20 ratio for training and testing. We used

10-fold cross validation technique to validate the effectiveness
of ML classifiers and to prevent over-fitting.

For imbalanced class distribution, F-measure and Geomet-
ric mean (G-mean) or balanced accuracy are used to measure
the classification performance [13]. F-measure is the measure
of test’s accuracy, and is defined as the weighted harmonic mean
of precision and recall. G-mean is the geometric mean of the
classification precision of minority class and the classification
precision of majority class. It evaluates the model’s ability to
correctly classify the minority and the majority class [14].

4. Results and Discussion
It can be seen from Table 1 and Table 2 that the XGBoost (XGB)
and the Decision Tree (DT) have highest test accuracy (92 %)
for babble 5dB among all classifiers. The DT has highest ac-
curacy for street 5dB, babble 10dB, car 10dB and train 10dB
noise class whereas the LR and linear SVC has the highest ac-
curacy for car 5dB and train 5dB noise class. The Linear SVC
exhibits better accuracy for street 10dB noise class. In most of
the cases, 5dB SNR noise classes have better classification ac-
curacy as compared to 10dB SNR noise classes. Average test
accuracy of the DT is 77 %, which is the highest among all ML
classifiers in classifying the speech signal context.

Table 1: F-measure of each classifier for each class

Classifier→ XGB RF DT LR SVM KNN Lin.
Class ↓ SVC
Babble 5dB 0.92 0.86 0.92 0.71 0.73 0.83 0.62
Babble 10dB 0.77 0.67 0.83 0.71 0.60 0.57 0.62
Car 5dB 0.67 0.71 0.67 0.80 0.40 0.67 0.80
Car 10dB 0.80 0.67 0.83 0.73 0.67 0.67 0.73
Street 5dB 0.83 0.77 0.91 0.77 0.60 0.83 0.77
Street 10dB 0.67 0.44 0.57 0.77 0.44 0.25 0.83
Train 5dB 0.67 0.67 0.67 0.83 0.71 0.40 0.83
Train 10dB 0.44 0.46 0.80 0.57 0.60 0.53 0.62
Average 0.72 0.65 0.77 0.73 0.59 0.59 0.72

Table 2: G-Mean of each classifier for each class

Classifier→ XGB RF DT LR SVM KNN Lin.
Class ↓ SVC
Babble 5dB 0.91 0.81 0.91 0.64 0.74 0.83 0.57
Babble 10dB 0.74 0.66 0.83 0.64 0.64 0.47 0.57
Car 5dB 0.66 0.64 0.66 0.81 0.47 0.66 0.81
Car 10dB 0.81 0.70 0.83 0.74 0.66 0.66 0.74
Street 5dB 0.83 0.74 0.91 0.74 0.64 0.83 0.74
Street 10dB 0.66 0.52 0.47 0.74 0.52 0.37 0.83
Train 5dB 0.70 0.66 0.70 0.83 0.64 0.47 0.83
Train 10dB 0.52 0.40 0.70 0.47 0.64 0.33 0.57
Average 0.72 0.64 0.75 0.70 0.61 0.57 0.70

5. Future Work
The ongoing published work [15] has presented the context-
classifier component of the proposed model (CAQoE) for clas-
sifying the speech signal context (i.e., noise type and SNR). Fu-
ture work will develop a collection of DNNs, trained and opti-
mised for particular noise classes i.e., context-sensitive. It will
also extend the range on contexts for the context-classifier.
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