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Abstract
Query-by-example (QbE) keyword spotting is convenient for
users to define their own keywords and useful in device control.
However, conventional regular softmax, which is commonly
used for training QbE models, has two limitations. First, the
learned features are not discriminative enough. Second, norm
variations of the unnormalized features affect computing cosine
similarities. To address these issues, this paper introduces nor-
malization and additive margin into residual networks for QbE
keyword spotting. Our methods achieve improvements in the
experiments.

1. Introduction
Query-by-example (QbE) keyword spotting is the task of de-
tecting the predefined keyword in a series of speech recordings.
The most typical application is to activate a device by a cus-
tomized wake-up word. A QbE keyword spotting system de-
tects audio segments directly without the need to build a robust
automatic speech recognition system and can easily deal with
the out-of-vocabulary (OOV) and low-resource situations.

Previous studies on QbE methods can be divided into two
categories. One comprises the dynamic time warping (DTW)
based methods [1, 2, 3] which calculate similarity of the frame-
level feature sequences. However, DTW costs much time
and computation. The other category comprises the embed-
ding learning methods which project the acoustic features into
a fixed-dimensional space and evaluate the similarity of em-
bedding vectors, which is simple but efficient. Several works
[4, 5, 6, 7] demonstrate the success of embedding learning and it
outperforms the DTW in QbE keyword spotting methods. How-
ever, norm variations of the unnormalized features leave a gap
between training and testing. Only after normalization, the vec-
tors are on a unit hypersphere, and the inner product operation
of softmax can become the cosine calculation, compatible with
the criterion (cosine similarity) in testing. Besides, regular soft-
max loss used for training can only separate different classes
apart without making features of the same class compact, which
leads to a limitation in discriminative feature learning [8, 9].

Normalization is a helpful method to eliminate the gap be-
tween training and testing. Feature normalization can boost the
performance in facial recognition [10, 11]. Additionally, addi-
tive margin softmax (AM-softmax) [9] is proposed to improve
the softmax loss and has recently proven to work well in facial
verification. It introduces an additive margin via subtracting a
hyper-parameter m in the cosine space [12], which can mini-
mize the intra-class variation.

2. Qbe framework
A user can predefine a specific keyword, and its bottleneck fea-
ture (BNF) is extracted by the neural network from the user’s
speech recordings. When testing, the same neural network ex-
tracts the BNF of the input audio. Then, the system calculates
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Figure 1: The left conventional architecture is trained with reg-
ular softmax loss, and the right one introduces normalization
and AM-softmax loss. The blue parts are the networks: resid-
ual block × 6 means that six residual blocks are stacked. The
parts with dashed lines show the training methods.

the cosine similarity to make a decision whether the audio is the
predefined keyword.
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Figure 2: A comparison of regular softmax (a), normalization
operation (b), and AM-softmax(c): the “×” marks represent
the embedding vectors of samples. Different colors correspond
to different labels.

3. Hypersphere embedding and additive
margin methods

As demonstrated in Figure 1, compared with the conventional
architecture, our proposed architecture replaces the regular soft-
max with AM-softmax and adds a normalization operation be-
fore the softmax layer in ResNet. After normalization, both the
feature vectors and the weight vectors are normalized on a unit
hypersphere, forming a hypersphere embedding.

The function of AM-softmax is as follows:
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(a) DET curves on the in-vocabulary set
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(b) DET curves on the OOV set
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(c) DET curves on the cross-corpus set

Figure 3: DET curves of the experiment results.
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where y is the BNF. Vector w is the weight which stands for
the prototype of the class. Subscripts i and j denote the i-th or
the j-th sample. k and n denote the sizes of classes and sam-
ples, respectively. Since the vectors y and w are normalized,
wT y = cos θ. Cosine values can be calculated directly. m is
the additive margin. s is the scaling factor. Because an additive
margin m is subtracted from cos θ, the value of AM-softmax is
less than the corresponding regular softmax one. If the value of
cos θ−m wants to be the same as the regular softmax, a larger
cosine value is needed. Thereby the distance between the sam-
ple of the same label will be more compact and the intra-class
differences will be reduced.

Figure 2 shows the improvement of each step. After nor-
malization, radial variations of the vectors are removed. Thus,
the calculation can just focus on the angular similarity. After
AM-softmax, the decision boundary becomes a decision mar-
gin rather than one simple vector boundary P0 [9].

4. Experiments
Since there are few publicly available datasets used for QbE
keyword spotting, we develop our new dataset based on the ex-
isting AISHELL-1 dataset [13] and HelloNPU corpus [14]. Ac-
cording to the data preparation idea in the work of A. Jansen et
al. [15], we select speech segments from the forced alignments
of transcripts. The duration of the segments are at least 0.5 sec-
onds and not exceeding 1 second. The labels contain at least 2
characters as texts. We select the segments with the frequency
in the top 5,000. We divide the segments into disjointed sets
named as training set and development set, including 200,095
utterances and 25,604 utterances, respectively. For evaluation,
we design 3 types of sets including the in-vocabulary set, the
OOV test set, and the cross-corpus test set. Cross-corpus set is
an entirely different dataset from HelloNPU corpus. Therefore,
we can use it for a further evaluation of our methods. Each test
size is made up of 20,000 speech segment pairs. Half of the la-
bel are positive (which means the keyword is ”Hello Xiaogua”)
and half of the label are negative (which means the keyword is
not ”Hello Xiaogua”).

As for the experimental setup, we extract the 40-

dimensional Mel-frequency cepstrum coefficients (MFCCs) of
the input audio and pad them to 99 frames. Then we take the
45-dimensional BNF generated from the ResNet. We use the
detection error tradeoff (DET) curve as criterion.

We firstly investigate different values of margin m, m =
[0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35]. Then we select the best
performing margin value m = 0.2 for further evaluation. m =
0 means that we just employ the normalization for both feature
and weight vectors without cosine margin. m 6= 0 means that
we employ both normalization and additive margin.

We regard regular softmax as the baseline, Figure 3(a), Fig-
ure 3(b), and Figure 3(c) demonstrate the improvement of “nor-
malization” and “normalization + margin” on all of the test sets.
The performance achieves increasingly better from regular soft-
max to “normalization”, and from “normalization” to “normal-
ization + margin”. At FAR of 2%, the FRR of “normalization +
margin” relatively reduces by 79.86% on the in-vocabulary set,
68.03% on the OOV set, and 46.60% on the cross-corpus set
compared to the regular softmax. And at FAR of 2%, the FFR
of “normalization + margin” relatively reduces by 79.86% on
the in-vocabulary set, 68.03% on the OOV set, and 46.60% on
the cross-corpus set compared to the regular softmax.

5. Discussions and Future work
From the above experiments, our proposed methods show im-
provement over the conventional regular softmax for keyword
spotting. These are attributed to two reasons. First, normaliza-
tion helps neural networks focus on angular optimization that
is more compatible to the test metric. Compared to the regular
softmax, which implicitly learns features from both Euclidean
norm and angle, normalization eliminates the variations in Eu-
clidean norm and constrains the features on hypersphere. Sec-
ond, the margin m helps to reduce the intra-class distance and,
moreover, leads to more discriminative feature learning.

This paper introduces the normalization operation and ad-
ditive margin into QbE keyword spotting tasks to learn discrim-
inative embedding features. These are simple and have an in-
tuitive geometric interpretation. In the future, we want to train
a network extracting embedding features from raw waveform
directly. Although MFCC and FBANK are employed in many
keyword spotting systems, they are hand-crafted features based
on prior knowledge and needed extra processing before being
fed into networks. Besides, SincNet [16] is proposed to process
raw audio with interpretability and performs well in speaker and
speech recognition. Thus, we want to explore its possibility in
QbE keyword spotting and make some improvement.
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