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Abstract
Speech processing in challenging acoustic conditions has been
an active area of research for decades. It has been shown that
acoustic environments of high levels of noise and echo, tran-
sient interference, reverberations, and degraded audio measure-
ments, which are practically unavoidable, lead to deteriorated
performance in most speech-based systems. This research ex-
amines various speech signal representations in both time and
time-frequency domains and introduces novel deep learning ar-
chitectures. In particular, we aim to develop real-time and low-
resources implementations that can be embedded into speech-
based hands-free communication platforms, and to apply them
into integrated frameworks in these acoustic environments, e.g.,
for voice activity detection, residual echo suppression, nonlin-
ear acoustic echo cancellation, and speech enhancement.
Index Terms: Hands-free speech communication, real-time
and low-resources implementations, deep learning

1. Introduction
The problem of speech processing in challenging acoustic con-
ditions has been an active area of research for decades. It has
been shown that low signal-to-noise-ratio (SNR) and signal-to-
echo-ratio (SER) levels, transient interference, reverberations,
and degraded and distorted measurements, which are unavoid-
able in real-life scenarios, lead to deteriorated performance in
most speech-based systems. Commonly, speech is represented
in the time-frequency domain using variations of the short-
time Fourier transform (STFT) [1]. In most deep learning ap-
proaches that attracted recent research efforts, the STFT is fed
as a sequential time frame representation into artificial neu-
ral networks or into feedback-based recurrent neural networks,
or alternatively as a sequence of images into convolutional-
oriented neural networks. These sub-optimal solutions fre-
quently pose a system latency that exceeds mobile communica-
tion standards, and demand high computational resources that
are often impractical for embedding on common processors for
mobile communication platforms. These considerations may
render existing deep learning-based speech processing systems
inadequate for real-time hands-free communication.

In our preliminary work, we focused on three speech-
based applications: voice activity detection (VAD), residual
echo suppression (RES), and nonlinear acoustic echo cancella-
tion (NLAEC). In each of these studies, we aimed to achieve
leading results in real-life acoustic setups while constructing
low-latency and low-resources neural network-based systems
that are adequate for real-time on-device communication plat-
forms. We first introduced a VAD system [2, 3] that utilized
the compact mel scale time-frequency representation [4], which
is a compression of the STFT representation. The spectral
features were fed into a small-scale fully-connected encoder-
decoder-based neural network. To address RES, we integrated

the efficient depth-wise-separable convolution technique on the
UNet convolutional deep learning model [5] for reconstruction
of speech from highly degraded measurements [6]. NLAEC
was also addressed by exploiting low-scale feedback-based neu-
ral networks that were directly fed with the waveform repre-
sentation of the speech signals [7]. Recently, we introduced
two objective metrics we developed to separately quantify the
desired-speech maintained level and residual-echo suppression
level during double-talk periods [8].

In this research, we aim to examine real-valued and
waveform-based speech signal representations, to develop a
dedicated speech-based framework for these representations,
and to extend these frameworks to additional speech process-
ing applications for hands-free communication. Specifically,
we target speech enhancement in transient noisy environment,
speech intelligibility enhancement for eavesdropping in un-
known acoustic environments, and acoustic fencing appliances.

2. Preliminary Results
We addressed VAD in reverberant acoustic environments of
transients and stationary noises [2], [3], which often occur in
real-life scenarios. We exploited unique spatial patterns of
speech and non-speech audio frames by independently learning
their underlying geometric structure. This process was done
through a deep encoder–decoder-based neural network archi-
tecture that involves an encoder that maps spectral features with
temporal information to their low-dimensional representations,
which are generated by applying the diffusion maps method [9].
The encoder feeds a decoder that maps the embedded data back
into the high dimensional space. A deep neural network, which
is trained to separate speech from non-speech frames, was ob-
tained by concatenating the decoder to the encoder, resembling
the known diffusion nets architecture [10]. Experimental results
showed enhanced performance compared to competing meth-
ods in both accuracy, robustness, and generalization ability.

Next, we proposed an RES method based on a UNet neu-
ral network that directly maps the outputs of a linear AEC sys-
tem to the desired signal in the spectral domain [6]. This sys-
tem embeds a novel design parameter we developed that al-
lows a tunable tradeoff between the desired-signal distortion
and residual echo suppression in double-talk scenarios. Exper-
iments are conducted with 161 h of data from the Microsoft
AEC-challenge database [11] and from real independent record-
ings. We demonstrated the superiority of the proposed system
in real-life conditions in terms of regarding echo suppression
and desired-signal distortion, generalization to various environ-
ments, and robustness to high echo levels.

We also developed an NLAEC system [7], which aims to
model the echo path from the far-end signal to the near-end
microphone in two parts. Inspired by the physical behavior of
modern hands-free devices [12], [13], [14], [15], we first intro-



duced a novel neural network architecture that is specifically de-
signed to model the nonlinear distortions these devices induce
between receiving and playing the far-end signal. To account
for variations between devices, we constructed this network
with trainable memory length and nonlinear activation functions
that are not parameterized in advance, but are rather optimized
during the training stage using the training data. Second, the
network was succeeded by a standard adaptive linear filter that
constantly tracks the echo path between the loudspeaker output
and the microphone. During training, the network and filter are
jointly optimized to learn the network parameters. Using 280 h
of real and synthetic data [16], experiments show advantageous
performance compared to competition in real-life setups.

The recent deep noise suppression mean opinion score
(DNSMOS) metric was shown to estimate human ratings with
great accuracy [17]. The signal-to-distortion ratio (SDR) metric
is widely used to evaluate RES systems by estimating speech
quality during double-talk [18]. However, since the SDR is
affected by both speech distortion and residual-echo presence,
it does not correlate well with human ratings according to the
DNSMOS. To address that, we introduced two objective met-
rics to separately quantify the desired-speech maintained level
(DSML) and residual-echo suppression level (RESL) during
double-talk [8]. These metrics are evaluated using our deep
learning-based RES-system with a tunable design parameter
[6]. Using 280 h of real and simulated data [16], we showed
that the DSML and RESL correlate well with the DNSMOS
with high generalization to various setups. Also, we empirically
investigated the relation between tuning the RES-system design
parameter and the DSML-RESL tradeoff it creates and offered
a practical design scheme for dynamic system requirements.

These systems meet the standard timing requirements of
hands-free communication [19] with maximal system latency
of 40 ms on a standard neural processor, e.g., the NDP120 by
SyntiantTM [20]. Also, their computational requirements reach
maximal amount of 10 Mega-bytes of overall required mem-
ory and 1.6 Giga floating-point operations per second (Gflops),
which is adequate for integration on common mobile devices.

3. Future Research Objectives and
Expected Significance

We aim to decompose the speech waveform signal into its fre-
quency sub-bands using a real-valued transform, in contrast
to the common complex-valued representation applied by the
STFT and its modifications. This transform can enable a uti-
lization of waveform-based deep learning models, and in certain
cases lead to improved performance compared to their STFT-
based counterparts. For instance, feedback-based neural net-
works that are specifically built for time sequence analysis and
were shown successful for speech analysis can be applied ef-
ficiently using this representation, e.g., [21], [22], [23], [24].
Also, preservation of phase information is achieved, in con-
trast to STFT-based methods that usually introduce mismatch
between the reconstructed amplitude and original phase infor-
mation. In addition, every sub-band is associated with a lower
sample frequency than the original signal, which may reduce
the computational complexity and lower the inference time of
the system. We already established an API to convert speech
waveform into its sub-bands using real-valued signal represen-
tation, and future research will involve applying this represen-
tation into a waveform-based speech processing framework.

Equipped with a sub-band decomposition of the speech sig-

nal, in the next research stage we plan to respectively decom-
pose existing speech-based systems into smaller and more effi-
cient sub-systems. Nowadays, waveform architectures are fed
with the complete spectrum of speech signals that often de-
mands high-resources consumption for high-quality modeling,
which is not optimal for real-time usage. We aim to process
each sub-band representation of the speech signal separately
and independently by a smaller waveform-based architecture,
and merge their outcomes. We hope that each sub-system will
require a small computational load that is reasonable for em-
bedding on real-time mobile communication platforms.

Today, speech enhancement systems are highly desirable
for various low-power hands-free communications platforms,
such as smartphones, smart speakers, wearable devices, smart
homes, IoT endpoints, and more. Speech enhancement resem-
bles our previous studies of residual echo suppression and non-
linear acoustic echo cancellation, since in both cases speech
should be recovered from degraded measurements. Speech en-
hancement also draws similarity to our voice activity detection
study that detected speech in transient noisy and reverberant en-
vironments. Thus, we aim to project the concepts we already
successfully applied in previous systems to speech enhance-
ment. To comprehend various real-life scenarios, we plan to
employ a new open source database that contains hundreds of
hours of recordings in real-life acoustic conditions [25].

We also aim to address speech intelligibility enhancement
for eavesdropping using hidden microphone recordings in un-
known acoustic environments. These may include ones with
strong reverberations, echoes, and interference, and speech not
directed at the microphone reception area. Achieving success in
the proposed research is valuable in several aspects. First, creat-
ing a low-power speech intelligibility enhancement system and
embedding it into stand-alone eavesdropping devices. Second,
exploiting narrow-band transmission that is cheap, long-range,
and low-power consuming, and extending the longevity of the
battery-supplied device. Third, allowing more rapid and im-
proved data inference by the end-user, i.e., the listener. Forth,
reducing cost spent on human trainings that include big data
collection. And fifth, achieving enhanced performance of fol-
lowing speech recognition algorithms. Similarly to the planned
speech enhancement research, we will examine our existing
deep learning systems and their performance on this task.

Acoustic fencing aims at separating speakers by their phys-
ical locations in a room using a microphone array [26]. Achiev-
ing success in this research can benefit many speech-based ap-
plications. For instance, it may improve speech enhancement
of a speaker located in a certain region by attenuating speech
sources that are located in other regions in the room. That and
more, it may enhance succeeding speech-based systems, e.g.,
for direction estimation, speaker recognition, and speech recog-
nition. Another on-demand application nowadays is automatic
transcription of conference meetings. By setting acoustic fences
that isolate speakers located in different regions in the room,
more accurate transcription results can potentially be obtained
compared with existing methods.
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