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Abstract
Emotion recognition is receiving more attention in human-
centric computer interaction. With the proliferation of ubiqui-
tous speech-based interfaces, speech emotion recognition (SER)
is an appealing modality to estimate emotions. However, the
disagreement on emotional annotations between annotators is
still a critical issue in affective computing tasks. Previous stud-
ies on SER with categorical emotions often rely on consensus
labels after aggregating the classes selected by multiple anno-
tators and formulating the task as a single-label classification
problem. The emotions are considered orthogonal to each other.
However, previous studies have indicated that emotions can co-
occur, especially for more ambiguous emotional sentences (e.g.,
a mixture of happiness and surprise). Therefore, the SER task
might be defined as a multi-label task. Furthermore, most of
the existing state-of-the-art models are based on deep neural
networks. Previous studies discovered that modern neural net-
works are poorly calibrated and the predictions of the models
are often over-confident, under-confident, or both. This Ph.D.
work hypothesizes that the disagreement between annotators
on the provided annotations might cause unreliable and uncer-
tainty in the predictions of speech emotion classifiers. I aim to
investigate whether predicting the agreements among annota-
tors on sentence-level annotations can improve the calibration
of speech emotion classifiers. Then, I plan to modify the exist-
ing state-of-the-art calibration method to jointly train the SER
systems to observe whether they are getting better-calibrated
speech emotion classifiers.
Index Terms: Speech emotion recognition, model calibration,
multi-label classification, distribution-label learning

1. Motivation
Speech emotion recognition (SER) plays an essential role in
human-centered computer interaction. Given the ubiquity of
speech-based interfaces, speech is one of the most convenient
modalities for recognizing human emotions. Emotional labels
used to train SER systems are often derived from perceptual
evaluations. However, emotion perception is subjective and
evaluators often have different emotional perceptions when lis-
tening to the same speech [1,2]. The standard approach in SER
studies is to regard the disagreement of emotional annotations
as noise and use a major vote or plurality rule to generate a
“clear” consensus label as the ground truth [3,4]. This method-
ology only allows each speech sentence to have only one emo-
tion label and defines the SER task as a “single-label” task. Ad-
ditionally, this methodology ignores valuable emotional infor-
mation and the chance of having co-occurring emotions, which
is quite familiar with emotional behaviors (e.g., a sentence con-
veying a mixture of happiness and surprise). This methodol-
ogy discards the data without a consensus label and the data
can not be used to evaluate the SER systems. Recently, in our
previous works [5, 6], we regard the SER task as multi-label
tasks and use the “soft” multi-label format as the ground truth.
However, the disagreement of ground truth for SER is still a
critical issue in affective computing tasks. I hypothesize that

the disagreement between annotators on the provided annota-
tions might cause unreliable and uncertainty in the predictions
of speech emotion classifiers. Therefore, the predictions of the
SER systems might be over-confident, under-confident, or both.
In this Ph.D. research, I will follow our aforementioned works
and use the “soft” multi-label format as the ground truth and in-
vestigate whether predicting the agreements among annotators
can improve the calibration of speech emotion classifiers.

2. Key Research Question
I aim to investigate whether the SER models need to be cali-
brated and explore whether modeling ambiguity in perceptual
emotional evaluations can calibrate SER models. The ambigu-
ity (the level of inter-annotator agreement) in perceptual evalu-
ation is challenging for emotion recognition and the disagree-
ment between annotators directly affects the performance of
emotion classifiers. Most studies use majority vote or plural-
ity rule to make labels for emotion recognition. However, these
operations ignore valuable emotional information. In this re-
search, I aim to use an entropy-based method proposed by Steidl
et al. [7] to measure the ambiguity of each data sample between
annotators. The entropy will be zero if all annotators provide the
same emotion class on the same data. Otherwise, the more the
annotators disagree, the higher the entropy. Besides, one of the
well-known evaluation metrics to measure model calibration is
Expected Calibration Error (ECE) [8]. The ECE is calculated
by the difference between a weighted average accuracy and the
confidence for a given bin represents the calibration gap. The
ECE value of a perfectly calibrated model is zero. Inspired by
this work [8], I modify the original ECE for a single-label task
into the one for a multi-label task as the calibration metric. Ide-
ally, the predictions of calibrated SER systems might have lower
uncertainty when the confidence of predictions is higher.

3. Methodology
3.1. Emotion Classification Model
We use the release version 1.10 MSP-Podcast corpus [9] to eval-
uate our proposed method because the data source comes from
real world settings instead acted emotional states. We focus on
8-class primary emotion recognition. An analysis by Keesing
et al. [10] revealed that the wav2vec feature set [11] is one of
the most effective features extraction approaches for SER tasks.
Therefore, I rely on this feature set as the input for the SER
system. I use the z-normalization function to normalize all the
features, where the parameters for the mean and standard devi-
ation are estimated from the train set. I follow the chunk-level
SER modeling methodology proposed by Lin and Busso [12]
as the core model. I choose to use long short-term memory
(LSTM) as the chuck-level feature encoder equipped with the
RNN-AttenVec chunk-level attention model, which was one of
the best combinations proposed by Lin and Busso [12].

3.2. Inter-annotator Agreement Estimation
I use the entropy-based measure proposed by Steid et al. [7]
to estimate inter-annotator agreements. Their method leaves



Table 1: Results for the eight-class SER task and ambiguity recognition (the column, Ambiguity). The symbol ↑ means that the
performance increases with higher values of the metric. The symbol ↓ means that the performance increases with lower values of the
metric. The bold numbers indicate the best performance for a given evaluation metric.

Weights Calibration Distribution Similarity Multi-label Classification Ambiguity

α β ECE ↓ Chebyshev↓ Clark↓ Canberra↓ KLD↓ Cosine↑ RMSE↓ HL↓ RL↓ COVE↓ maF1↑ miF1↑ weF1↑ Cosine↑ RMSE↓

1 0 0.108 0.394 1.955 5.199 0.815 0.658 0.172 0.286 0.511 6.327 0.244 0.522 0.395 - -

0.9 0.1 0.111 0.392 1.951 5.182 0.815 0.662 0.172 0.286 0.510 6.314 0.251 0.523 0.402 0.748 0.742
0.8 0.2 0.109 0.393 1.961 5.206 0.810 0.663 0.172 0.287 0.508 6.306 0.253 0.525 0.404 0.749 0.742
0.7 0.3 0.120 0.393 1.958 5.195 0.812 0.663 0.172 0.289 0.510 6.306 0.267 0.525 0.417 0.752 0.741
0.6 0.4 0.117 0.392 1.939 5.157 0.820 0.659 0.172 0.284 0.511 6.314 0.257 0.524 0.409 0.750 0.742
0.5 0.5 0.116 0.392 1.954 5.188 0.812 0.662 0.172 0.288 0.509 6.308 0.260 0.525 0.410 0.751 0.741
0.4 0.6 0.113 0.393 1.941 5.158 0.821 0.658 0.173 0.285 0.514 6.346 0.241 0.520 0.393 0.749 0.741
0.3 0.7 0.115 0.394 1.944 5.165 0.824 0.658 0.173 0.287 0.514 6.346 0.247 0.520 0.398 0.749 0.742
0.2 0.8 0.101 0.397 1.967 5.216 0.819 0.660 0.173 0.289 0.512 6.338 0.246 0.522 0.395 0.749 0.742
0.1 0.9 0.084 0.397 1.976 5.238 0.813 0.661 0.172 0.286 0.506 6.303 0.239 0.526 0.391 0.748 0.742

each annotator in succession and averages the computed en-
tropy value (the level of inter-annotator agreement) for each
annotator over the left-out annotators. I follow the denotation
in [7] and define the value as the ambiguity recognition task.
The overall inter-annotator agreement entropy mean of each
data sample can be estimated by:

H(s) =
1

N

N∑
n=1

(H(n̄, s)). (1)

3.3. Multi-task Learning and Objective Functions
3.3.1. Distribution-label Emotion Learning
In the emotion recognition task, given the ground truth (Y T )
and model prediction (Y P ), we use Kullback–Leibler diver-
gence (KLD) as the objective function.

LE = KLD(Y T , Y P ). (2)

3.3.2. Inter-annotator Agreement Learning
In the ambiguity (the level of inter-annotator agreements) esti-
mation task, given the ground truth (Y T ) and model prediction
(Y P ), we use Mean squared error (MSE) as the loss function.

LA = MSE(Y T , Y P ). (3)

3.3.3. Multi-task Learning
I use different weights by setting the α or β to range from 0.1
to 0.9. The final objective function is as follows:

L Total = α · LE + β · LA. (4)

4. Results and Future Plan
4.1. Experimental Settings
The details about the model structure and its parameters are the
same as the two multi-task ones used by Chou et al. [5]. Follow-
ing insights from previous studies, I use the softmax function as
the activation function of the output layer for KLD [5,6,13]. We
use the Adam optimizer with a learning rate set to 0.0001, and
with a batch sizes of 128. We train the models for 25 epochs
selecting the best model based on the lowest loss on the devel-
opment set. The best model is used to assess the system on the
test set. To observe the effect of the proposed loss on the model
performance, I set the value of α in Equation 4 to the range from
0.1 to 0.9 and the sum of α and β equals 1.

4.2. Evaluation Metrics
I use multiple evaluation metrics to compare the predicted la-
bels with the ground truth. For calibration measure, I modified
the Expected Calibration Error (ECE) [8] into the multi-label

ECE. For distribution similarity measure, I use the metrics used
in Fan et al. [14]: chebyshev distance (Chebyshev), clark dis-
tance (Clark), canberra distance (Canberra), Kullback–Leibler
divergence (KLD), cosine similarity (Cosine). I also add root
mean square error (RMSE) to evaluate the differences of values
between predictions and labels. For multi-label classification
performance, I use the metrics used in Fei et al. [15]: ham-
ming loss (HL), ranking loss (RL), coverage error (COVE), and
macro F1-score (maF1). I also add micro F1-score (miF1) and
weighted F1-score (weF1) as evaluation metrics. I adopt the
value used by Chou et al. [5, 6] setting the threshold to 1/8 to
convert the prediction probabilities into the binary vectors.

4.3. Experimental Results To Date and Future Plan

Table 1 shows the overall classification performance over dif-
ferent settings. The column α and β are the weight values for
the LE and LA losses, respectively. Most of the best results
are from models trained with the LA loss. While no model
dominates the evaluation metrics, most of the best results are
from the models predicting the ambiguity task. If we focus on
maF1 and weF1, the best model trained with LA when α equals
0.7 and β equals 0.3 achieves a 9.47% and 5.51% relative im-
provement over the baseline method, respectively. If we focus
on ECE, the model trained with LA when α equals 0.1 and β
equals 0.9 achieves the best result. However, the calibration
of model is not significantly improved in our experiments. I
aim to follow the suggestion presented in [16] to use the ad-
ditional dataset for calibrating deep neural network-based sys-
tems and include the robustness calibration metrics proposed by
the paper [17, 18] and use the new start-of-the-are SER model
proposed by Wagner et al. [19]. My future plan is to propose
a novel calibration method based on [16] for the multi-label
emotion classification task and to explore other ambiguity mea-
sure method, such as Wong et al. [20]. We also want to in-
vestigate the performance of the calibration method proposed
by Tellamekala et al. [21] on multimodal emotion recognition
task. We want the predictions of calibrated SER systems to have
lower uncertainty when the confidence of predictions is higher.

5. Challenges and Expected Contributions
Based on the results in Table 1, the ambiguity recognition task is
not significantly helpful on calibration of emotion predictions.
Hopefully I can have some suggestion after the doctoral con-
sortium from a panel of experts. I expect the following contri-
butions of this Ph.D. work: (1) demonstrate the relationship be-
tween the calibration of SER systems and inter-annotator agree-
ments; (2) propose a novel calibration method for SER systems.
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